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The dataset used for this analysis can be found using the following link

About LendingClub:

LendingClub is a US peer-to-peer lending company, headquartered in San Francisco, California. It was the first peer-to-
peer lender to register its offerings as securities with the Securities and Exchange Commission (SEC), and to offer loan
trading on a secondary market. Lending Club is the world's largest peer-to-peer lending platform.The company claims that
$ 15.98 billion in loans had been originated through its platform up to December 31, 2015.

Lending Club enables borrowers to create unsecured personal loans between $$1,000 and $ 40,000. The standard loan
period is three years. Investors can search and browse the loan listings on Lending Club website and select loans that
they want to invest in based on the information supplied about the borrower, amount of loan, loan grade, and loan
purpose. Investors make money from interest. Lending Club makes money by charging borrowers an origination fee and
investors a service fee.

About the Dataset

These files contain complete loan data for all loans issued through the 2007-2015, including the current loan status
(Current, Late, Fully Paid, etc.) and latest payment information. The file containing loan data through the "present"
contains complete loan data for all loans issued through the previous completed calendar quarter. Additional features
include credit scores, number of finance inquiries, address including zip codes, and state, and collections among others.
The file is a matrix of about 890 thousand observations and 75 variables. A data dictionary is provided in a separate file. k

Purpose of this analysis

Build a machine learning algorithm to predict loan defaulters based on certain variables present in the dataset, so we can
correctly identifying defaulters (True positives) of the lender lending club in order to consider whether existing borrowers
are fit for additional loans or not in the future.

How Lending Club Works?

Loading Packages

We will start by importing the packages that will be used throughout the analysis

In [0]: # data manipulation and prepocessing 

import pandas as pd 

import numpy as np 

# data visualization 

import seaborn as sns 

import matplotlib.pyplot as plt 

%matplotlib inline 

from sklearn.model_selection import train_test_split 

from sklearn.model_selection import cross_val_score 

from sklearn.model_selection import GridSearchCV 

from sklearn.preprocessing import StandardScaler 

from sklearn.metrics import confusion_matrix 

from sklearn.metrics import roc_auc_score 

from sklearn.metrics import roc_curve 

from scipy.stats import boxcox 

In [0]: # read the dataset 

df = pd.read_csv('../lending_club/loan.csv.zip', low_memory=False) 

df.head(5) 

Data Cleaning

In [0]: # find the count and percentage of values that are missing in the dataframe. 

df_null = pd.DataFrame({'Count': df.isnull().sum(), 'Percent': 100*df.isnull().sum()/len(df)}) 

# print columns with null count more than 0 

df_null[df_null['Count'] > 0]  

As you can see, there are a lot of columns which have huge chunk of data missing. These columns are not necessary for
our analysis. The following part will drop any columns where 80% or more data is missing. This will help us clean the
Dataset a little bit.

In [0]: df1 = df.dropna(axis=1, thresh=int(0.80*len(df))) 

In [0]: df1.head(3) 

Now that we explored the whole dataframe easily, we will now select the columns that are necessary for our analysis.

In [0]: df_LC = df1.filter(['loan_amnt','term','int_rate','installment','grade','sub_grade','emp_length'

,'home_ownership', 

                   'annual_inc','verification_status','purpose','dti','delinq_2yrs','loan_statu

s']) 

df_LC.dtypes 

Finding the correlation between variables

We will now look at the correlation structure between our variables that we selected above. This will tell us about any
dependencies between different variables and help us reduce the dimensionality a little bit more

In [0]: plt.figure(figsize=(20,20)) 

sns.set_context("paper", font_scale=1) 

# find the correllation matrix and changing the categorical data to category for the plot. 

sns.heatmap(df_LC.assign(grade=df_LC.grade.astype('category').cat.codes, 

                        sub_g=df_LC.sub_grade.astype('category').cat.codes, 

                        term=df_LC.term.astype('category').cat.codes, 

                       emp_l=df_LC.emp_length.astype('category').cat.codes, 

                        ver =df_LC.verification_status.astype('category').cat.codes, 

                       home=df_LC.home_ownership.astype('category').cat.codes, 

                       purp=df_LC.purpose.astype('category').cat.codes).corr(),  

                        annot=True, cmap='YlGnBu',vmin=-1, vmax=1, square=True, linewidths=0.5) 

It can be seen from the plot above that loan amount and installment have a very high correlation amongst each other
(0.94). This is intuitive since a person who takes a large sum of loan would require extra time to repay it back. Also,
interest rate, sub grade and grade have a very high correlation between them. This is obvious since interest rate is
decided by grades once the grades are decided, a subgrade is assigned to that loan (leading to high correlation).

Let's drop the three categories alongwith term and verification status(since it doesn't provide any valuable info) for further
analysis.

In [0]: df_LC.drop(['installment','grade','sub_grade','verification_status','term'] 

          , axis=1, inplace = True) 

In [0]: # print the count and null values in the dataframe 

dflc_null = pd.DataFrame({'Count': df_LC.isnull().sum(), 'Percent': 100*df_LC.isnull().sum()/len

(df_LC)}) 

dflc_null[dflc_null['Count'] > 0] 

In [0]: # dropping the null rows since we have sufficient amount of data and there is no need to fill th

e null values. 

df_LC.dropna(axis=0) 

In [0]: # print unique statuses in the loan status column (dependent variable) 

df_LC['loan_status'].unique() 

Distribution of the loan status values

Let us now see how the values in the status column are distributed. We will plot an histogram of values against count of
times the status appears on the dataframe

In [0]: m = df_LC['loan_status'].value_counts() 

m = m.to_frame() 

m.reset_index(inplace=True) 

m.columns = ['Loan Status','Count'] 

plt.subplots(figsize=(15,8)) 

sns.barplot(y='Count', x='Loan Status', data=m) 

plt.xlabel("Length") 

plt.ylabel("Count") 

plt.title("Distribution of Loan Status in our Dataset") 

plt.show() 

As you can see, we have a lot of loans which are current with fair amount of fully paid loans. other categories (including)
default have a really low number. This means the data is imbalanced and we might need to do something about this later
in the analysis. For now we will drop all the columns except 'Fully Paid', 'Default' and 'Charged off'. We will also merge
'Charged off' and 'Default' together meaning that anyone who fell into this category defaulted their loan. The following two
parts tries to implement this.

In [0]: df_LC = df_LC[df_LC.loan_status != 'Current'] 

df_LC = df_LC[df_LC.loan_status != 'In Grace Period'] 

df_LC = df_LC[df_LC.loan_status != 'Late (16-30 days)'] 

df_LC = df_LC[df_LC.loan_status != 'Late (31-120 days)'] 

df_LC = df_LC[df_LC.loan_status != 'Does not meet the credit policy. Status:Fully Paid'] 

df_LC = df_LC[df_LC.loan_status != 'Does not meet the credit policy. Status:Charged Off'] 

df_LC = df_LC[df_LC.loan_status != 'Issued'] 

In [0]: df_LC['loan_status'] = df_LC['loan_status'].replace({'Charged Off':'Default'}) 

df_LC['loan_status'].value_counts() 

We will now encode the two categories listed above as 0 or 1 for our analysis. This will help us in predicting whether a
person defaulted their loan or not. 0 means he deaulted and 1 means he paid off his loan.

In [0]: df_LC.loan_status=df_LC.loan_status.astype('category').cat.codes 

df_LC.delinq_2yrs=df_LC.delinq_2yrs.astype('category').cat.codes 

df_LC.head() 

df_LC['loan_status'].value_counts() 

#df_LC = pd.get_dummies(df_LC, drop_first=True) 

#df_LC 

In [0]: df_LC.dtypes 

Transformation

Before training the data, we would first transform the data to account for any skewness in the variable distribution. Various
transformation techniques ranging from log transform to power transformation are available. For our analysis, we'll be
using Box-cox transformation. It is used to modify the distributional shape of a set of data to be more normally distributed
so that tests and confidence limits that require normality can be appropriately used.

In [0]: numerical = df_LC.columns[df_LC.dtypes == 'float64'] 

for i in numerical: 

   if df_LC[i].min() > 0: 

       transformed, lamb = boxcox(df_LC.loc[df[i].notnull(), i]) 

       if np.abs(1 - lamb) > 0.02: 

           df_LC.loc[df[i].notnull(), i] = transformed 

One Hot Encoding

Since we have some categorical variables for the analysis and the machne learning algorithms doesn't take categorical
and string variables directly, we have to creat dummy variables for them. We can either encode them using label encoder
available for python, but it would be wrong in our analysis since a lot of these variables have multiple categories. Just
using weights can cause discrepencies in the algorithm. Instead, we will one hot encode these so that we have a 1
wherever that category turns up and 0 otherwise. This will also create seperate columns for each level of category. Also,
we'll be dropping one of the categories so that we have N-1 columns instead of N.

In [0]: df_LC = pd.get_dummies(df_LC, drop_first=True) 

Now splitting the data using scikitlearn's train_test_split and using 60% data for training and 40% for testing.

In [0]: traindata, testdata = train_test_split(df_LC, stratify=df_LC['loan_status'],test_size=.4, random

_state=17) 

testdata.reset_index(drop=True, inplace=True) 

traindata.reset_index(drop=True, inplace=True) 

We'll now scale the data so that each column has a mean of zero and unit standard deviation. Xunb (unbalanced set) and
yunb are the independent and target variable.

In [0]: sc = StandardScaler() 

Xunb = traindata.drop('loan_status', axis=1) 

yunb = traindata['loan_status'] 

numerical = Xunb.columns[(Xunb.dtypes == 'float64') | (Xunb.dtypes == 'int64')].tolist() 

Xunb[numerical] = sc.fit_transform(Xunb[numerical]) 

In [0]: # preview the shape of training data 

yunb.shape 

Model Selection

We are now ready to build some models. The following would be our approach for building and selecting the best model:

1. Build a model on the imbalance dataset we got from data cleaning.
2. Balance the dataset by using equal amount of default and 'fully paid' loans.

Trying the Unbalanced Dataset

Let's first try the unbalanced dataset.The function below computes the receiver operating characteristic (ROC) curves for
each of the models. This function will be called later in the analysis.

In [0]: # roc curve to find a good model that optimizes the trade off between 

# the False Positive Rate (FPR) and True Positive Rate (TPR) 

def createROC(models, X, y, Xte, yte): 

   false_p, true_p = [], [] # false postives and true positives 

   for i in models.keys():  # dict of models 

       models[i].fit(X, y) 

       fp, tp, threshold = roc_curve(yte, models[i].predict_proba(Xte)[:,1]) # roc_curve functi

on 

       true_p.append(tp) 

       false_p.append(fp) 

   return true_p, false_p # returning the true postive and false positive 

Let's try some models on the train dataset With 3 fold cross validation. We are going to use the following 4 machine
learning algorithms:

1. Linear Discriminant Analysis
2. Multinomial Naive Bayes
3. Random Forest (tree based model)
4. Logistic Regression

In [0]: from sklearn.discriminant_analysis import LinearDiscriminantAnalysis 

from sklearn.ensemble import RandomForestClassifier 

from sklearn.linear_model import LogisticRegression 

from sklearn.naive_bayes import MultinomialNB 

models = {'LDA': LinearDiscriminantAnalysis(), 

         'MNB': MultinomialNB(), 

         'RF': RandomForestClassifier(n_estimators=100), 

         'LR': LogisticRegression(C=1)} 

unbalset = {} 

for i in models.keys(): 

   scores = cross_val_score(models[i], Xunb - np.min(Xunb) + 1, 

                                   yunb, cv=3) 

   unbalset[i] = scores 

   print(i, scores, np.mean(scores)) 

Looks like Logistic regression provides the best estimate and almost all of the models giving the same results. Because of
the issue of collinearity in LDA, we are going to ignore that.

Now creating the test set for the analysis and scaling it.

In [0]: Xte = testdata.drop('loan_status', axis=1) 

yte = testdata['loan_status'] 

numerical = Xte.columns[(Xte.dtypes == 'float64') | (Xte.dtypes == 'int64')].tolist() 

Xte[numerical] = sc.fit_transform(Xte[numerical]) 

Computing the ROC curves for the models and finding the true positive and false positives.

In [0]: tp_unbalset, fp_unbalset = createROC(models, Xunb - np.min(Xunb) + 1, yunb, Xte - np.min(Xte) + 

1, yte) 

Fitting LR to the test set.

In [0]: model =  LogisticRegression(C=1) 

model.fit(Xunb, yunb) 

predict = model.predict(Xte) # prediction of Xte which can be used to test against yte (testdata 

values or true values of y) 

In [0]: m = yte.to_frame() 

m['loan_status'].value_counts() 

We will now plot the cross-validation scores, ROC curves and confusion matrix of random forest model. X axis is the true
value and Y axis is the predicted value.

In [0]: fig, axes = plt.subplots(nrows=1, ncols=3, figsize=(18,5)) 

ax = pd.DataFrame(unbalset).boxplot(widths=(0.9,0.9,0.9,0.9), grid=False, vert=False, ax=axes[0

]) 

ax.set_ylabel('Classifier') 

ax.set_xlabel('Cross-Validation Score') 

for i in range(0, len(tp_unbalset)): 

   axes[1].plot(fp_unbalset[i], tp_unbalset[i], lw=1) 

axes[1].plot([0, 1], [0, 1], '--k', lw=1) 

axes[1].legend(models.keys()) 

axes[1].set_ylabel('True Positive Rate') 

axes[1].set_xlabel('False Positive Rate') 

axes[1].set_xlim(0,1) 

axes[1].set_ylim(0,1) 

cm = confusion_matrix(yte, predict).T 

cm = cm.astype('float')/cm.sum(axis=0) 

ax = sns.heatmap(cm, annot=True, cmap='YlGnBu', ax=axes[2]); 

ax.set_xlabel('True Value') 

ax.set_ylabel('Predicted Value') 

ax.axis('equal') 

The cross-validation scores and ROC curves suggest the Logistic Regression is the best model, though the MNB and
linear discriminant analysis models are pretty close behind. If we look at the confusion matrix, though, we see a big
problem.The model can predict who are going to pay off the loan with a good accuracy of 99% but cannot predict who are
going to default. The true positive rate of default (0 predicting 0) is almost 0. Since our main goal is to predict defaulter's,
we have to do something about this.

The reason this is happening could be because of high imbalance in our dataset and the algorithm is putting everything
into 1. We have to chose a new prediction threshold according to the sensitivity and specificity of the model. This will
create some balance in predicting the binary outcome. Let's look at the plots below.

In [0]: fp, tp, threshold = roc_curve(yte, model.predict_proba(Xte)[:,1]) #getting false and true positi

ve from test set 

In [0]: fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(16,6)) 

ax[0].plot(threshold, tp + (1 - fp)) 

ax[0].set_xlabel('Threshold') 

ax[0].set_ylabel('Sensitivity + Specificity') 

ax[1].plot(threshold, tp, label="tp") 

ax[1].plot(threshold, 1 - fp, label="1 - fp") 

ax[1].legend() 

ax[1].set_xlabel('Threshold') 

ax[1].set_ylabel('True Positive & False Positive Rates') 

In [0]: # finding the optimal threshold for the model  

function = tp + (1 - fp) 

index = np.argmax(function) 

optimal_threshold = threshold[np.argmax(function)] 

print('optimal threshold:', optimal_threshold) 

The optimal threshold above is where the the two graphs meet.

1. Sensitivity (also called the true positive rate, the recall, or probability of detection in some fields) measures the
proportion of actual positives that are correctly identified as such (e.g., the percentage of sick people who are
correctly identified as having the condition).

2. Specificity (also called the true negative rate) measures the proportion of actual negatives that are correctly identified
as such (e.g., the percentage of healthy people who are correctly identified as not having the condition)

Now using this threshold for the model:

In [0]: predict = model.predict_proba(Xte)[:,1] 

predict = np.where(predict >= optimal_threshold, 1, 0) 

fig, axes = plt.subplots(figsize=(8,6)) 

cm = confusion_matrix(yte, predict).T 

cm = cm.astype('float')/cm.sum(axis=0) 

ax = sns.heatmap(cm, annot=True, cmap='YlGnBu') 

ax.set_xlabel('True Value') 

ax.set_ylabel('Predicted Value') 

ax.axis('equal') 

That's great! The optimum threshold for the classifier have increased out models prediction power of Default (0). Even
now the model doesn't provide a lot of prediction power and we have to train the model again using a different algorithm
with some tweaks.

Part2 : Balancing the training dataset and creating a new model

Now we will try to use a balanced dataset with equal amount of zeroes and 1's. The following part does the same.

In [0]: y_default = traindata[traindata['loan_status'] == 0] 

n_paid = traindata[traindata['loan_status'] == 1].sample(n=len(y_default), random_state=17) # ch

osing equal amount of 1's 

# creating a new dataframe for balanced set 

data = y_default.append(n_paid)  

# creating the independent and dependent array 

Xbal = data.drop('loan_status', axis=1) 

ybal = data['loan_status'] 

In [0]: # scaling it again 

numerical = Xbal.columns[(Xbal.dtypes == 'float64') | (Xbal.dtypes == 'int64')].tolist() 

Xbal[numerical] = sc.fit_transform(Xbal[numerical]) 

Training the model on the balanced set

In [0]: from sklearn.discriminant_analysis import LinearDiscriminantAnalysis 

from sklearn.ensemble import RandomForestClassifier 

from sklearn.linear_model import LogisticRegression 

from sklearn.naive_bayes import MultinomialNB 

models = {'LDA': LinearDiscriminantAnalysis(), 

         'MNB': MultinomialNB(), 

         'RF': RandomForestClassifier(n_estimators=100), 

         'LR': LogisticRegression(C=1)} 

balset = {} 

for i in models.keys(): 

   scores = cross_val_score(models[i], Xbal - np.min(Xbal) + 1, 

                                   ybal, scoring='roc_auc', cv=3) 

   balset[i] = scores 

   print(i, scores, np.mean(scores)) 

Even though we almost got the same result as before, This time we are going to select Random Forst method and will try
to find the optimal number of trees using the gridsearchcv and try to make the predition based on this and lets see if there
is any improvements in predicting 0's

In [0]: model = RandomForestClassifier(n_estimators=100) 

model.fit(Xbal, ybal) 

predict = model.predict(Xte) 

In [0]: predict = model.predict(Xte) 

fig, axes = plt.subplots(figsize=(8,6)) 

cm = confusion_matrix(yte, predict).T 

cm = cm.astype('float')/cm.sum(axis=0) 

ax = sns.heatmap(cm, annot=True, cmap='YlGnBu') 

ax.set_xlabel('True Label') 

ax.set_ylabel('Predicted Label') 

ax.axis('equal') 

That's a significant improvement over the last model that we built using Logistic regression.

Let's find the optimum number of estimators for this model and use that for prediction. This time we are going to use 5 fold
cross validation.

In [0]: params = {'n_estimators': [50, 100, 200, 400, 600, 800]} 

grid_search = GridSearchCV(RandomForestClassifier(), param_grid=params, 

                                  scoring='accuracy', cv=5, n_jobs=-1) 

grid_search.fit(Xbal, ybal) 

print(grid_search.best_params_) 

print(grid_search.best_score_) 

The best model has 600 trees

In [0]: #r = pd.DataFrame() 

#r['x'] = [i for i in params.values()][0] 

#r['y'] = [i[1] for i in grid_search.cv_results_] 

#ax = r.plot(x='x', y='y', legend=False, linestyle='-', marker='o', figsize=(8,6)) 

#ax.set_xlabel('n_estimators') 

#ax.set_ylabel('5-Fold Cross-Validation Score') 

As we can see, the score increases as we increase the number of estimators till 600 and then falls for 800 number of
estimators.

We will use this to estimate to fit the model.

In [0]: grid_search.best_estimator_.fit(Xbal, ybal) 

predict = model.predict(Xte) 

In [0]: fig, axes = plt.subplots(figsize=(8,6)) 

cm = confusion_matrix(yte, predict).T 

cm = cm.astype('float')/cm.sum(axis=0) 

ax = sns.heatmap(cm, annot=True, cmap='YlGnBu') 

ax.set_xlabel('True Label') 

ax.set_ylabel('Predicted Label') 

ax.axis('equal') 

Interestingly, this gives us the same output as the previous model. Even now we have a good accuracy of 71% predicting
defaluter's as defaulter's.

Since random forest is based on decision trees, we can also plot the variable importance. Variable importance tells us
which variable had highest importance when predicting an outcome.

In [0]: r = pd.DataFrame(columns=['Feature','Importance']) 

ncomp = 15 

r['Feature'] = feat_labels = Xbal.columns 

r['Importance'] = model.feature_importances_ 

r.set_index(r['Feature'], inplace=True) 

ax = r.sort_values('Importance', ascending=False)[:ncomp].plot.bar(width=0.9, legend=False, figs

ize=(15,8)) 

ax.set_ylabel('Relative Importance') 

As you can see, interest rate followed by debt to income ratio,annual income, and loan amount are the most important
features in predicting the defaulter's. Lending Club might want to use this as the metric for identifying people defaulting on
their loans.

Conclusion

We have successfully built an machine learning algorithm to predict the people who might default on their loans. This can
be further used by LendingClub for their analysis. Also, we might want to look on other techniques or variables to improve
the prediction power of the algorthm. One of the drawbacks is just the limited number of people who defaulted on their
loan in the 8 years of data (2007-2015) present in the dataset. We can use an updated dataframe which forecasts the
next 3 years values (2015-2018) and see how many of the current loans were paid off or defaulted or even charged off.
Then these new data points can be used for predicting them or even used to train the model again to improve its
accuracy.

Since we had a lot of categorical data, we cannot apply PCA for dimensionality reduction. Because of this, we can try
some different type of variable selection method like 'MULTIPLE CORRESPONDENCE ANALYSIS' to reduce the
dimensionality and select the most important variables from the columns.

Since the algorithm puts around 47% of non-defaulters in the default class, we might want to look further into this issue to
make the model more robust.

Out[0]:

id member_id loan_amnt funded_amnt funded_amnt_inv term int_rate installment grade sub_grade ... to

0 1077501 1296599 5000.0 5000.0 4975.0 36
months 10.65 162.87 B B2 ...

1 1077430 1314167 2500.0 2500.0 2500.0 60
months 15.27 59.83 C C4 ...

2 1077175 1313524 2400.0 2400.0 2400.0 36
months 15.96 84.33 C C5 ...

3 1076863 1277178 10000.0 10000.0 10000.0 36
months 13.49 339.31 C C1 ...

4 1075358 1311748 3000.0 3000.0 3000.0 60
months 12.69 67.79 B B5 ...

5 rows × 74 columns

Out[0]:

Count Percent

emp_title 51462 5.799326

emp_length 44825 5.051393

annual_inc 4 0.000451

desc 761351 85.797726

title 152 0.017129

delinq_2yrs 29 0.003268

earliest_cr_line 29 0.003268

inq_last_6mths 29 0.003268

mths_since_last_delinq 454312 51.197065

mths_since_last_record 750326 84.555303

open_acc 29 0.003268

pub_rec 29 0.003268

revol_util 502 0.056571

total_acc 29 0.003268

last_pymnt_d 17659 1.990018

next_pymnt_d 252971 28.507661

last_credit_pull_d 53 0.005973

collections_12_mths_ex_med 145 0.016340

mths_since_last_major_derog 665676 75.015974

annual_inc_joint 886868 99.942415

dti_joint 886870 99.942640

verification_status_joint 886868 99.942415

acc_now_delinq 29 0.003268

tot_coll_amt 70276 7.919502

tot_cur_bal 70276 7.919502

open_acc_6m 866007 97.591559

open_il_6m 866007 97.591559

open_il_12m 866007 97.591559

open_il_24m 866007 97.591559

mths_since_rcnt_il 866569 97.654892

total_bal_il 866007 97.591559

il_util 868762 97.902024

open_rv_12m 866007 97.591559

open_rv_24m 866007 97.591559

max_bal_bc 866007 97.591559

all_util 866007 97.591559

total_rev_hi_lim 70276 7.919502

inq_fi 866007 97.591559

total_cu_tl 866007 97.591559

inq_last_12m 866007 97.591559

Out[0]:

id member_id loan_amnt funded_amnt funded_amnt_inv term int_rate installment grade sub_grade ... la

0 1077501 1296599 5000.0 5000.0 4975.0 36
months 10.65 162.87 B B2 ...

1 1077430 1314167 2500.0 2500.0 2500.0 60
months 15.27 59.83 C C4 ...

2 1077175 1313524 2400.0 2400.0 2400.0 36
months 15.96 84.33 C C5 ...

3 rows × 52 columns

Out[0]: loan_amnt              float64 

term                    object 

int_rate               float64 

installment            float64 

grade                   object 

sub_grade               object 

emp_length              object 

home_ownership          object 

annual_inc             float64 

verification_status     object 

purpose                 object 

dti                    float64 

delinq_2yrs            float64 

loan_status             object 

dtype: object

Out[0]: <matplotlib.axes._subplots.AxesSubplot at 0x1a2b4ac0b8>

Out[0]:

Count Percent

emp_length 44825 5.051393

annual_inc 4 0.000451

delinq_2yrs 29 0.003268

Out[0]:

loan_amnt int_rate emp_length home_ownership annual_inc purpose dti delinq_2yrs loan_status

0 5000.0 10.65 10+ years RENT 24000.00 credit_card 27.65 0.0 Fully Paid

1 2500.0 15.27 < 1 year RENT 30000.00 car 1.00 0.0 Charged Off

2 2400.0 15.96 10+ years RENT 12252.00 small_business 8.72 0.0 Fully Paid

3 10000.0 13.49 10+ years RENT 49200.00 other 20.00 0.0 Fully Paid

4 3000.0 12.69 1 year RENT 80000.00 other 17.94 0.0 Current

5 5000.0 7.90 3 years RENT 36000.00 wedding 11.20 0.0 Fully Paid

6 7000.0 15.96 8 years RENT 47004.00 debt_consolidation 23.51 0.0 Current

7 3000.0 18.64 9 years RENT 48000.00 car 5.35 0.0 Fully Paid

8 5600.0 21.28 4 years OWN 40000.00 small_business 5.55 0.0 Charged Off

9 5375.0 12.69 < 1 year RENT 15000.00 other 18.08 0.0 Charged Off

10 6500.0 14.65 5 years OWN 72000.00 debt_consolidation 16.12 0.0 Fully Paid

11 12000.0 12.69 10+ years OWN 75000.00 debt_consolidation 10.78 0.0 Fully Paid

12 9000.0 13.49 < 1 year RENT 30000.00 debt_consolidation 10.08 0.0 Charged Off

13 3000.0 9.91 3 years RENT 15000.00 credit_card 12.56 0.0 Fully Paid

14 10000.0 10.65 3 years RENT 100000.00 other 7.06 0.0 Charged Off

15 1000.0 16.29 < 1 year RENT 28000.00 debt_consolidation 20.31 0.0 Fully Paid

16 10000.0 15.27 4 years RENT 42000.00 home_improvement 18.60 0.0 Fully Paid

17 3600.0 6.03 10+ years MORTGAGE 110000.00 major_purchase 10.52 0.0 Fully Paid

18 6000.0 11.71 1 year MORTGAGE 84000.00 medical 18.44 2.0 Fully Paid

19 9200.0 6.03 6 years RENT 77385.19 debt_consolidation 9.86 0.0 Fully Paid

20 20250.0 15.27 3 years RENT 43370.00 debt_consolidation 26.53 0.0 Fully Paid

21 21000.0 12.42 10+ years RENT 105000.00 debt_consolidation 13.22 0.0 Charged Off

22 10000.0 11.71 10+ years OWN 50000.00 credit_card 11.18 0.0 Fully Paid

23 10000.0 11.71 5 years RENT 50000.00 debt_consolidation 16.01 0.0 Fully Paid

24 6000.0 11.71 1 year RENT 76000.00 major_purchase 2.40 0.0 Charged Off

25 15000.0 9.91 2 years MORTGAGE 92000.00 credit_card 29.44 0.0 Fully Paid

26 15000.0 14.27 9 years RENT 60000.00 debt_consolidation 15.22 0.0 Charged Off

27 5000.0 16.77 2 years RENT 50004.00 other 13.97 3.0 Charged Off

28 4000.0 11.71 10+ years MORTGAGE 106000.00 debt_consolidation 5.63 1.0 Fully Paid

29 8500.0 11.71 < 1 year RENT 25000.00 credit_card 12.19 0.0 Fully Paid

... ... ... ... ... ... ... ... ... ...

887346 6000.0 10.49 4 years RENT 42000.00 debt_consolidation 10.66 0.0 Fully Paid

887347 17000.0 15.99 10+ years MORTGAGE 63078.00 debt_consolidation 31.70 0.0 Fully Paid

887348 13000.0 8.19 10+ years MORTGAGE 85000.00 credit_card 8.05 1.0 Current

887349 20000.0 6.99 2 years MORTGAGE 72000.00 debt_consolidation 27.24 0.0 Current

887350 10300.0 13.66 10+ years RENT 93600.00 debt_consolidation 15.72 1.0 Current

887351 4200.0 15.99 10+ years MORTGAGE 48000.00 medical 36.93 0.0 Charged Off

887352 15000.0 11.99 < 1 year RENT 70000.00 debt_consolidation 8.47 0.0 Current

887353 15000.0 11.44 4 years RENT 57000.00 debt_consolidation 15.77 0.0 Current

887354 6000.0 17.86 10+ years MORTGAGE 90000.00 debt_consolidation 2.84 0.0 Current

887356 23000.0 15.59 10+ years MORTGAGE 50000.00 credit_card 31.95 0.0 Current

887357 18700.0 17.86 10+ years RENT 52000.00 debt_consolidation 11.28 0.0 Current

887358 25000.0 15.99 3 years RENT 103000.00 debt_consolidation 5.27 0.0 Current

887360 26500.0 8.67 10+ years MORTGAGE 92000.00 debt_consolidation 29.60 1.0 Current

887361 21000.0 6.03 10+ years MORTGAGE 65000.00 credit_card 17.09 0.0 Current

887362 8000.0 8.19 9 years MORTGAGE 50000.00 debt_consolidation 17.62 0.0 Current

887363 12000.0 9.49 4 years RENT 40000.00 debt_consolidation 25.65 1.0 Current

887364 10775.0 6.03 < 1 year RENT 54000.00 debt_consolidation 13.22 1.0 Fully Paid

887365 7000.0 14.31 10+ years RENT 57000.00 debt_consolidation 16.80 2.0 Current

887366 6225.0 16.49 2 years RENT 27000.00 debt_consolidation 18.58 0.0 Fully Paid

887367 10000.0 6.49 1 year RENT 75000.00 debt_consolidation 33.66 0.0 Current

887368 13150.0 14.99 8 years MORTGAGE 30000.00 major_purchase 1.00 0.0 Current

887369 4000.0 8.67 10+ years MORTGAGE 50000.00 car 12.63 0.0 Fully Paid

887370 7500.0 9.49 8 years RENT 40000.00 debt_consolidation 25.63 0.0 Current

887372 12000.0 11.99 < 1 year MORTGAGE 63000.00 credit_card 23.69 1.0 Current

887373 11575.0 15.59 10+ years RENT 25400.00 credit_card 27.08 0.0 Current

887374 10000.0 11.99 8 years RENT 31000.00 debt_consolidation 28.69 0.0 Current

887375 24000.0 11.99 10+ years MORTGAGE 79000.00 home_improvement 3.90 0.0 Current

887376 13000.0 15.99 5 years RENT 35000.00 debt_consolidation 30.90 0.0 Current

887377 12000.0 19.99 1 year RENT 64400.00 debt_consolidation 27.19 1.0 Current

887378 20000.0 11.99 10+ years RENT 100000.00 credit_card 10.83 0.0 Current

842525 rows × 9 columns

Out[0]: array(['Fully Paid', 'Charged Off', 'Current', 'Default', 

       'Late (31-120 days)', 'In Grace Period', 'Late (16-30 days)', 

       'Does not meet the credit policy. Status:Fully Paid', 

       'Does not meet the credit policy. Status:Charged Off', 'Issued'], 

      dtype=object)

Out[0]: Fully Paid    207723 

Default        46467 

Name: loan_status, dtype: int64

Out[0]: 1    207723 

0     46467 

Name: loan_status, dtype: int64

Out[0]: loan_amnt         float64 

int_rate          float64 

emp_length         object 

home_ownership     object 

annual_inc        float64 

purpose            object 

dti               float64 

delinq_2yrs          int8 

loan_status          int8 

dtype: object

Out[0]: (152514,)

/Users/claireleannesaunders/anaconda3/lib/python3.7/site-packages/sklearn/discriminant_analysi

s.py:388: UserWarning: Variables are collinear. 

 warnings.warn("Variables are collinear.") 

LDA [0.81750231 0.81720367 0.81773118] 0.8174790526041468 

MNB [0.81718759 0.81720367 0.81720007] 0.8171971098553484 

RF [0.81211275 0.81185334 0.81411177] 0.8126926183761549 

/Users/claireleannesaunders/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/logisti

c.py:433: FutureWarning: Default solver will be changed to 'lbfgs' in 0.22. Specify a solver t

o silence this warning. 

 FutureWarning) 

/Users/claireleannesaunders/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/logisti

c.py:433: FutureWarning: Default solver will be changed to 'lbfgs' in 0.22. Specify a solver t

o silence this warning. 

 FutureWarning) 

/Users/claireleannesaunders/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/logisti

c.py:433: FutureWarning: Default solver will be changed to 'lbfgs' in 0.22. Specify a solver t

o silence this warning. 

 FutureWarning) 

LR [0.81726627 0.81773477 0.81767217] 0.8175577350662624 

/Users/claireleannesaunders/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/logisti

c.py:433: FutureWarning: Default solver will be changed to 'lbfgs' in 0.22. Specify a solver t

o silence this warning. 

 FutureWarning) 

/Users/claireleannesaunders/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/logisti

c.py:433: FutureWarning: Default solver will be changed to 'lbfgs' in 0.22. Specify a solver t

o silence this warning. 

 FutureWarning) 

Out[0]: 1    83089 

0    18587 

Name: loan_status, dtype: int64

Out[0]: (0.0, 2.0, 2.0, 0.0)

Out[0]: Text(0, 0.5, 'True Positive & False Positive Rates')

optimal threshold: 0.8079914859607571 

Out[0]: (0.0, 2.0, 2.0, 0.0)

/Users/claireleannesaunders/anaconda3/lib/python3.7/site-packages/sklearn/discriminant_analysi

s.py:388: UserWarning: Variables are collinear. 

 warnings.warn("Variables are collinear.") 

/Users/claireleannesaunders/anaconda3/lib/python3.7/site-packages/sklearn/discriminant_analysi

s.py:388: UserWarning: Variables are collinear. 

 warnings.warn("Variables are collinear.") 

/Users/claireleannesaunders/anaconda3/lib/python3.7/site-packages/sklearn/discriminant_analysi

s.py:388: UserWarning: Variables are collinear. 

 warnings.warn("Variables are collinear.") 

LDA [0.69464012 0.70130022 0.69650983] 0.6974833900111825 

MNB [0.68770514 0.69223586 0.68904917] 0.6896633859895305 

RF [0.67215822 0.67331161 0.66824151] 0.671237112728265 

/Users/claireleannesaunders/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/logisti

c.py:433: FutureWarning: Default solver will be changed to 'lbfgs' in 0.22. Specify a solver t

o silence this warning. 

 FutureWarning) 

/Users/claireleannesaunders/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/logisti

c.py:433: FutureWarning: Default solver will be changed to 'lbfgs' in 0.22. Specify a solver t

o silence this warning. 

 FutureWarning) 

/Users/claireleannesaunders/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/logisti

c.py:433: FutureWarning: Default solver will be changed to 'lbfgs' in 0.22. Specify a solver t

o silence this warning. 

 FutureWarning) 

LR [0.69468578 0.70130559 0.69655863] 0.6975166660896145 

Out[0]: (0.0, 2.0, 2.0, 0.0)

{'n_estimators': 600} 

0.6287661406025825 

Out[0]: (0.0, 2.0, 2.0, 0.0)

Out[0]: Text(0, 0.5, 'Relative Importance')

https://www.kaggle.com/wendykan/lending-club-loan-data

