
In [0]: # Import dependencies 

# We're also setting a shared variable "figsize" that we'll used later in our

data visualisation logic 

import pandas as pd 

import numpy as np 

import matplotlib.pyplot as plt 

%matplotlib inline 

figsize = (16, 8) 

In [12]: # Upload data (zipfile) 

from google.colab import files 

files.upload() 

In [0]: # Read data 

df_vt = pd.read_csv('VT-clean.csv.gz', compression='gzip', low_memory=False) 

In [0]: # Copy of data, so if changes are made we would not lose the original datasets 

df_vt_original=df_vt.copy() 

In [15]: # Preview data 

df_vt.head() 

In [16]: # Preview structure of the data i.e. features and data types 

df_vt.columns 

In [17]: # Print data types for each variable 

df_vt.dtypes 

In [18]: # Shape of dataset 

df_vt.shape 

Drop missing values

In [19]: # Count each column to determine how consistently populated the data is 

df_vt.count() 

We can see that most columns have similar numbers of values besides search_type, which is not
present for most of the rows, likely because most stops do not result in a search.

For our analysis, it will be best to have the exact same number of values for each field. We'll go
ahead now and make sure that every single cell has a value.

In [20]: # Fill missing search type values with placeholder 

df_vt['search_type'].fillna('N/A', inplace=True) 

# Drop rows with missing values 

df_vt.dropna(inplace=True) 

df_vt.count() 

When we count the values again, we see that each column has the exact same number of entries.

Stops By County

Let's get a list of all counties in the data set, along with how many traffic stops happened in each.

In [21]: df_vt['county_name'].value_counts() 

If you're familiar with Vermont's geography, you'll notice that the police stops seem to be more
concentrated in counties in the southern-half of the state. The southern-half of the state is also
where much of the cross-state traffic flows in transit to and from New Hampshire, Massachusetts,
and New York. Since the traffic stop data is from the state troopers, this interstate highway traffic
could potentially explain why we see more traffic stops in these counties.

Violations

Let's check out the distribution of traffic stop reasons.

In [22]: df_vt['violation'].value_counts() 

Unsurprisingly, the top reason for a traffic stop is Moving Violation (speeding, reckless driving, etc.),
followed by Equipment (faulty lights, illegal modifications, etc.).

By using the violation_raw fields as reference, we can see that the Other category includes
"Investigatory Stop" (the police have reason to suspect that the driver of the vehicle has committed
a crime) and "Externally Generated Stop" (possibly as a result of a 911 call, or a referral from
municipal police departments).

DUI ("driving under the influence", i.e. drunk driving) is surprisingly the least prevalent, with only
711 total recorded stops for this reason over the five year period (2010-2015) that the dataset
covers. This seems low, since Vermont had 2,647 DUI arrests in 2015, so I suspect that a large
proportion of these arrests were performed by municipal police departments, and/or began with a
Moving Violation stop, instead of a more specific DUI stop.

Outcomes

Let's check traffic stop outcomes.

In [23]: df_vt['stop_outcome'].value_counts() 

A majority of stops result in a written warning - which goes on the record but carries no direct
penalty. A bit over 1/3 of the stops result in a citation (commonly known as a ticket), which comes
with a direct fine and can carry other negative side-effects such as raising a driver's auto insurance
premiums.

The decision to give a warning or a citation is often at the discretion of the police officer, so this
could be a good source for studying bias.

Stops By Gender

Let's breack down traffic stops by gender.

In [24]: df_vt['driver_gender'].value_counts() 

In [25]: # Normalize can be set to True to print proportions instead of number  

# Percentage distribution 

df_vt['driver_gender'].value_counts(normalize=True) 

We can see that approximately 36% of the stops are of women drivers, and 64% are of men.

Stops By Race

Let's examine distribution by race.

In [26]: df_vt['driver_race'].value_counts() 

In [27]: df_vt['driver_race'].value_counts(normalize=True) 

Most traffic stops are of white drivers, which is to be expected since Vermont is around 96% white
(making it the 2nd-least diverse state in the nation, behind Maine). Since white drivers make up
approximately 96% of the traffic stops, there's no obvious bias here for pulling over non-white
drivers vs white drivers. Using the same methodology, however, we can also see that while black
drivers make up roughly 2% of all traffic stops, only 1.3% of Vermont's population is black.

Police Stop Frequency By Race And Age

Let's visualize how the frequency of police stops breaks down by both race and age.

In [28]: fig, ax = plt.subplots() 

ax.set_xlim(15, 70) 

for race in df_vt['driver_race'].unique(): 

 s = df_vt[df_vt['driver_race'] == race]['driver_age'] 

 s.plot.kde(ax=ax, label=race) 

ax.legend() 

We can see that young drivers in their late teens and early twenties are the most likely to be pulled
over. Between ages 25 and 35, the stop rate of each demographic drops off quickly. As far as the
racial comparison goes, the most interesting disparity is that for white drivers between the ages of
35 and 50 the pull-over rate stays mostly flat, whereas for other races it continues to drop steadily.

Violation And Outcome Analysis
One interesting topic that we touched on earlier is the fact that the decision to penalize a driver with
a ticket or a citation is often at the discretion of the police officer. With this in mind, let's see if there
are any discernable patterns in driver demographics and stop outcome.

Analysis Helper Function

In order to assist in this analysis, we'll define a helper function to aggregate a few important
statistics from our dataset.

citations_per_warning - The ratio of citations to warnings. A higher number signifies a greater
likelihood of being ticketed instead of getting off with a warning.
arrest_rate - The percentage of stops that end in an arrest.

In [0]: def compute_outcome_stats(df): 

   """Compute statistics regarding the relative quanties of arrests, warning

s, and citations""" 

   n_total = len(df) 

   n_warnings = len(df[df['stop_outcome'] == 'Written Warning']) 

   n_citations = len(df[df['stop_outcome'] == 'Citation']) 

   n_arrests = len(df[df['stop_outcome'] == 'Arrest for Violation']) 

   citations_per_warning = n_citations / n_warnings 

   arrest_rate = n_arrests / n_total 

   return(pd.Series(data = { 

       'n_total': n_total, 

       'n_warnings': n_warnings, 

       'n_citations': n_citations, 

       'n_arrests': n_arrests, 

       'citations_per_warning': citations_per_warning, 

       'arrest_rate': arrest_rate 

   })) 

In [30]: # Let's test out this helpe function by applying it to the entire dataframe 

compute_outcome_stats(df_vt) 

In the above result, we can see that about 1.17% of traffic stops result in an arrest, and there are
on-average 0.62 citations (tickets) issued per warning. This data passes the sanity check, but it's
too coarse to provide many interesting insights. Let's dig deeper.

Breakdown By Gender

Using our helper function, along with the Pandas dataframe groupby method, we can easily
compare these stats for male and female drivers.

In [31]: df_vt.groupby('driver_gender').apply(compute_outcome_stats) 

We can see here that men are, on average, twice as likely to be arrested during a traffic stop, and
are also slightly more likely to be given a citation than women. It is, of course, not clear from the
data whether this is indicative of any bias by the police officers, or if it reflects that men are being
pulled over for more serious offenses than women on average.

Breakdown By Race

Let's compute the same comparision, group by race.

In [32]: df_vt.groupby('driver_race').apply(compute_outcome_stats) 

Interesting! We notice that Asian drivers are arrested at the lowest rate, but receive tickets at the
highest rate (roughly 1 ticket per warning). Black and Hispanic drivers are both arrested at a higher
rate and ticketed at a higher rate than white drivers.

In [33]: # Let's visualize these outcomes 

race_agg = df_vt.groupby(['driver_race']).apply(compute_outcome_stats) 

fig, axes = plt.subplots(nrows=2, ncols=1, figsize=figsize) 

race_agg['citations_per_warning'].plot.barh(ax=axes[0], figsize=figsize, title

="Citation Rate By Race") 

race_agg['arrest_rate'].plot.barh(ax=axes[1], figsize=figsize, title='Arrest R

ate By Race') 

Group By outcome And Violation

By grouping each statistic by the violation that triggered the traffic stop.

In [34]: df_vt.groupby(['driver_race','violation']).apply(compute_outcome_stats) 

Ok, well this table looks interesting, but it's rather large and visually overwhelming. Let's trim down
that dataset in order to retrieve a more focused subset of information.

In [0]: # Create new column to represent whether the driver is white 

df_vt['is_white'] = df_vt['driver_race'] == 'White' 

# Remove violation with too few data points 

df_vt_filtered = df_vt[~df_vt['violation'].isin(['Other (non-mapped)', 'DUI'

])] 

We're generating a new column to represent whether or not the driver is white. We are also
generating a filtered version of the dataframe that strips out the two violation types with the fewest
datapoints.

In [36]: # Let's redo our race + violation aggregation now, using our filtered dataset 

df_vt_filtered.groupby(['is_white','violation']).apply(compute_outcome_stats) 

Great! much easier to digest.

In the above table, we can see that non-white drivers are more likely to be arrested during a stop
that was initiated due to an equipment or moving violation, but white drivers are more likely to be
arrested for a traffic stop resulting from "Other" reasons. Non-white drivers are more likely than
white drivers to be given tickets for each violation.

Visualize Stop Outcome And Vioiation Results

In [37]: # Let's generate bar graph 

race_stats = df_vt_filtered.groupby(['violation', 'driver_race']).apply(comput

e_outcome_stats).unstack() 

fig, axes = plt.subplots(nrows=1, ncols=2, figsize=figsize) 

race_stats.plot.bar(y='arrest_rate', ax=axes[0], title='Arrest Rate By Race an

d Violation') 

race_stats.plot.bar(y='citations_per_warning', ax=axes[1], title='Citations Pe

r Warning By Race and Violation') 

We can see in these charts that Hispanic and Black drivers are generally arrested at a higher rate
than white drivers (with the exception of the rather ambiguous "Other" category). and that Black
drivers are more likely, across the board, to be issued a citation than white drivers. Asian drivers
are arrested at very low rates, and their citation rates are highly variable.

These results are compelling, and are suggestive of potential racial bias, but they are too
inconsistent across violation types to provide any definitive answers. Let's dig deeper to see what
else we can find.

Search Outcome Analysis

We'll now use the available data to perform our own outcome test, in order to determine whether
minorities in Vermont are routinely searched on the basis of less evidence than white drivers.

Compute Search Rate And Hit Rate

We'll define a new function to compute the search rate and hit rate for the traffic stops in our
dataframe.

Search Rate - The rate at which a traffic stop results in a search. A search rate of 0.20 would
signify that out of 100 traffic stops, 20 resulted in a search.
Hit Rate - The rate at which contraband is found in a search. A hit rate of 0.80 would signify
that out of 100 searches, 80 searches resulted in contraband (drugs, unregistered weapons,
etc.) being found.

In [0]: def compute_search_stats(df): 

   """Compute the search rate and hit rate""" 

   search_conducted = df['search_conducted'] 

   contraband_found = df['contraband_found'] 

   n_stops     = len(search_conducted) 

   n_searches  = sum(search_conducted) 

   n_hits      = sum(contraband_found) 

   # Filter out counties with too few stops 

   if (n_stops) < 50: 

       search_rate = None 

   else: 

       search_rate = n_searches / n_stops 

   # Filter out counties with too few searches 

   if (n_searches) < 5: 

       hit_rate = None 

   else: 

       hit_rate = n_hits / n_searches 

   return(pd.Series(data = { 

       'n_stops': n_stops, 

       'n_searches': n_searches, 

       'n_hits': n_hits, 

       'search_rate': search_rate, 

       'hit_rate': hit_rate 

   })) 

Compute Search Stats For Entire Dataset

In [41]: # Let's test our new function and determine the search rate and hit rate for t

he entire state 

compute_search_stats(df_vt) 

Here we can see that each traffic stop had a 1.2% change of resulting in a search, and each search
had an 80% chance of yielding contraband.

Compare Search Stats By Driver Gender

In [42]: df_vt.groupby('driver_gender').apply(compute_search_stats) 

We can see here that men are three times as likely to be searched as women, and that 80% of
searches for both genders resulted in contraband being found. The data shows that men are
searched and caught with contraband more often than women, but it is unclear whether there is
any gender discrimination in deciding who to search since the hit rate is equal.

Compare Search Stats By Age

We'll split the dataset into age buckets and perform the same analysis

In [43]: age_groups = pd.cut(df_vt["driver_age"], np.arange(15, 70, 5)) 

df_vt.groupby(age_groups).apply(compute_search_stats) 

We can see here that the search rate steadily declines as drivers get older, and that the hit rate
also declines rapidly for older drivers.

Compare Search Stats By Race

In [44]: df_vt.groupby('driver_race').apply(compute_search_stats) 

Black and Hispanic drivers are searched at much higher rates than White drivers (5% and 4% of
traffic stops respectively, versus 1% for white drivers), but the searches of these drivers only yield
contraband 60-70% of the time, compared to 80% of the time for White drivers.

Let's rephrase these results.

Black drivers are 500% more likely to be searched than white drivers during a traffic stop, but are
13% less likely to be caught with contraband in the event of a search.

Hispanic drivers are 400% more likely to be searched than white drivers during a traffic stop, but
are 17% less likely to be caught with contraband in the event of a search.

Compare Search Stats By Race And Location

Let's add in location as another factor. It's possible that some counties (such as those with larger
towns or with interstate highways where opioid trafficking is prevalent) have a much higher search
rate / lower hit rates for both white and non-white drivers, but also have greater racial diversity,
leading to distortion in the overall stats. By controlling for location, we can determine if this is the
case.

We'll define three new helper functions to generate the visualizations.

In [0]: def generate_comparison_scatter(df, ax, state, race, field, color): 

   """Generate scatter plot comparing field for white drivers with minority d

rivers""" 

   race_location_agg = df.groupby(['county_fips','driver_race']).apply(comput

e_search_stats).reset_index().dropna() 

   race_location_agg = race_location_agg.pivot(index='county_fips', columns=

'driver_race', values=field) 

   ax = race_location_agg.plot.scatter(ax=ax, x='White', y=race, s=150, label

=race, color=color) 

   return ax 

def format_scatter_chart(ax, state, field): 

   """Format and label to scatter chart""" 

   ax.set_xlabel('{} - White'.format(field)) 

   ax.set_ylabel('{} - Non-White'.format(field, race)) 

   ax.set_title("{} By County - {}".format(field, state)) 

   lim = max(ax.get_xlim()[1], ax.get_ylim()[1]) 

   ax.set_xlim(0, lim) 

   ax.set_ylim(0, lim) 

   diag_line, = ax.plot(ax.get_xlim(), ax.get_ylim(), ls="--", c=".3") 

   ax.legend() 

   return ax 

def generate_comparison_scatters(df, state): 

   """Generate scatter plots comparing search rates of white drivers with bla

ck and hispanic drivers""" 

   fig, axes = plt.subplots(nrows=1, ncols=2, figsize=figsize) 

   generate_comparison_scatter(df, axes[0], state, 'Black', 'search_rate', 'r

ed') 

   generate_comparison_scatter(df, axes[0], state, 'Hispanic', 'search_rate', 

'orange') 

   generate_comparison_scatter(df, axes[0], state, 'Asian', 'search_rate', 'g

reen') 

   format_scatter_chart(axes[0], state, 'Search Rate') 

   generate_comparison_scatter(df, axes[1], state, 'Black', 'hit_rate', 'red'

) 

   generate_comparison_scatter(df, axes[1], state, 'Hispanic', 'hit_rate', 'o

range') 

   generate_comparison_scatter(df, axes[1], state, 'Asian', 'hit_rate', 'gree

n') 

   format_scatter_chart(axes[1], state, 'Hit Rate') 

   return fig 

We'll now generate the scatter plots using the function

In [46]: generate_comparison_scatters(df_vt, 'VT') 

The plots above are comparing search_rate (left) and hit_rate (right) for minority drivers compared
with white drivers in each county. If all of the dots (each of which represents the stats for a single
county and race) followed the diagonal center line, the implication would be that white drivers and
non-white drivers are searched at the exact same rate with the exact same standard of evidence.

Unfortunately, this is not the case. In the above charts, we can see that, for every county, the
search rate is higher for Black and Hispanic drivers even though the hit rate is lower.

Let's define one more visualization helper function, to show all of these results on a single scatter
plot.

In [0]: def generate_county_search_stats_scatter(df, state): 

   """Generate a scatter plot of search rate vs. hit rate by race and count

y""" 

   race_location_agg = df.groupby(['county_fips','driver_race']).apply(comput

e_search_stats) 

   colors = ['blue','orange','red', 'green'] 

   fig, ax = plt.subplots(figsize=figsize) 

   for c, frame in race_location_agg.groupby(level='driver_race'): 

       ax.scatter(x=frame['hit_rate'], y=frame['search_rate'], s=150, label=c

, color=colors.pop() if colors else None) 

   ax.legend(loc='upper center', bbox_to_anchor=(0.5, 1.2), ncol=4, fancybox=

True) 

   ax.set_xlabel('Hit Rate') 

   ax.set_ylabel('Search Rate') 

   ax.set_title("Search Stats By County and Race - {}".format(state)) 

   return fig 

In [61]: generate_county_search_stats_scatter(df_vt, "VT") 

As the old idiom goes - a picture is worth a thousand words. The above chart is one of those
pictures - and the name of the picture is "Systemic Racism".

The search rates and hit rates for white drivers in most counties are consistently clustered around
80% and 1% respectively. We can see, however, that nearly every county searches Black and
Hispanic drivers at a higher rate, and that these searches uniformly have a lower hit rate than those
on White drivers.

This state-wide pattern of a higher search rate combined with a lower hit rate suggests that a lower
standard of evidence is used when deciding to search Black and Hispanic drivers compared to
when searching White drivers.

What Next?
Do these results imply that all police officers are overtly racist? No.

Do they show that Black and Hispanic drivers are searched much more frequently than white
drivers, often with a lower standard of evidence? Yes.
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Out[15]:

id state stop_date stop_time location_raw county_name county_fips fine_grained_locatio

0
VT-

2010-
00001

VT 2010-07-
01 00:10 East

Montpelier
Washington

County 50023.0 COUNTY R

1
VT-

2010-
00002

VT 2010-07-
01 00:10 NaN NaN NaN COUNTY RD; Fitc

Roa

2
VT-

2010-
00003

VT 2010-07-
01 00:10 NaN NaN NaN COUNTY RD; Fitc

Roa

3
VT-

2010-
00004

VT 2010-07-
01 00:11 Whiting Addison

County 50001.0 N MAIN S

4
VT-

2010-
00005

VT 2010-07-
01 00:35 Hardwick Caledonia

County 50005.0 i91 nb mm 6

5 rows × 23 columns

Out[16]: Index(['id', 'state', 'stop_date', 'stop_time', 'location_raw', 'county_nam

e', 

      'county_fips', 'fine_grained_location', 'police_department', 

      'driver_gender', 'driver_age_raw', 'driver_age', 'driver_race_raw', 

      'driver_race', 'violation_raw', 'violation', 'search_conducted', 

      'search_type_raw', 'search_type', 'contraband_found', 'stop_outcome', 

      'is_arrested', 'officer_id'], 

     dtype='object')

Out[17]: id                        object 

state                     object 

stop_date                 object 

stop_time                 object 

location_raw              object 

county_name               object 

county_fips              float64 

fine_grained_location     object 

police_department         object 

driver_gender             object 

driver_age_raw           float64 

driver_age               float64 

driver_race_raw           object 

driver_race               object 

violation_raw             object 

violation                 object 

search_conducted            bool 

search_type_raw           object 

search_type               object 

contraband_found          object 

stop_outcome              object 

is_arrested                 bool 

officer_id               float64 

dtype: object

Out[18]: (283285, 23)

Out[19]: id                       283285 

state                    283285 

stop_date                283285 

stop_time                283285 

location_raw             282591 

county_name              282580 

county_fips              282580 

fine_grained_location    282938 

police_department        283285 

driver_gender            281573 

driver_age_raw           282114 

driver_age               281999 

driver_race_raw          279301 

driver_race              278468 

violation_raw            281107 

violation                281107 

search_conducted         283285 

search_type_raw          281045 

search_type                3419 

contraband_found         283251 

stop_outcome             280960 

is_arrested              283285 

officer_id               283273 

dtype: int64

Out[20]: id                       273181 

state                    273181 

stop_date                273181 

stop_time                273181 

location_raw             273181 

county_name              273181 

county_fips              273181 

fine_grained_location    273181 

police_department        273181 

driver_gender            273181 

driver_age_raw           273181 

driver_age               273181 

driver_race_raw          273181 

driver_race              273181 

violation_raw            273181 

violation                273181 

search_conducted         273181 

search_type_raw          273181 

search_type              273181 

contraband_found         273181 

stop_outcome             273181 

is_arrested              273181 

officer_id               273181 

dtype: int64

Out[21]: Windham County       37715 

Windsor County       36464 

Chittenden County    24815 

Orange County        24679 

Washington County    24633 

Rutland County       22885 

Addison County       22813 

Bennington County    22250 

Franklin County      19715 

Caledonia County     16505 

Orleans County       10344 

Lamoille County       8604 

Essex County          1239 

Grand Isle County      520 

Name: county_name, dtype: int64

Out[22]: Moving violation      212100 

Equipment              50600 

Other                   9768 

DUI                      711 

Other (non-mapped)         2 

Name: violation, dtype: int64

Out[23]: Written Warning         166488 

Citation                103401 

Arrest for Violation      3206 

Warrant Arrest              76 

Verbal Warning              10 

Name: stop_outcome, dtype: int64

Out[24]: M    174070 

F     99111 

Name: driver_gender, dtype: int64

Out[25]: M    0.637197 

F    0.362803 

Name: driver_gender, dtype: float64

Out[26]: White       261339 

Black         5571 

Asian         3446 

Hispanic      2562 

Other          263 

Name: driver_race, dtype: int64

Out[27]: White       0.956651 

Black       0.020393 

Asian       0.012614 

Hispanic    0.009378 

Other       0.000963 

Name: driver_race, dtype: float64

Out[28]: <matplotlib.legend.Legend at 0x7f1d0c055d68>

Out[30]: arrest_rate                   0.011736 

citations_per_warning         0.621072 

n_arrests                  3206.000000 

n_citations              103401.000000 

n_total                  273181.000000 

n_warnings               166488.000000 

dtype: float64

Out[31]:

arrest_rate citations_per_warning n_arrests n_citations n_total n_warnings

driver_gender

F 0.007043 0.548247 698.0 34840.0 99111.0 63548.0

M 0.014408 0.666029 2508.0 68561.0 174070.0 102940.0

Out[32]:

arrest_rate citations_per_warning n_arrests n_citations n_total n_warnings

driver_race

Asian 0.006384 1.002339 22.0 1714.0 3446.0 1710.0

Black 0.019925 0.802379 111.0 2428.0 5571.0 3026.0

Hispanic 0.016393 0.865827 42.0 1168.0 2562.0 1349.0

Other 0.026616 1.048000 7.0 131.0 263.0 125.0

White 0.011571 0.611188 3024.0 97960.0 261339.0 160278.0

Out[33]: <matplotlib.axes._subplots.AxesSubplot at 0x7f1d09749b70>

Out[34]:

arrest_rate citations_per_warning n_arrests n_citations n_total n_war

driver_race violation

Asian DUI 0.200000 0.333333 2.0 2.0 10.0

Equipment 0.006270 0.132143 2.0 37.0 319.0

Moving
violation 0.005563 1.183190 17.0 1647.0 3056.0 1

Other 0.016393 0.875000 1.0 28.0 61.0

Black DUI 0.200000 0.142857 2.0 1.0 10.0

Equipment 0.029181 0.220651 26.0 156.0 891.0

Moving
violation 0.016052 0.942385 71.0 2110.0 4423.0 2

Other 0.048583 2.205479 12.0 161.0 247.0

Hispanic DUI 0.200000 3.000000 2.0 6.0 10.0

Equipment 0.023560 0.187898 9.0 59.0 382.0

Moving
violation 0.012422 1.058824 26.0 1062.0 2093.0 1

Other 0.064935 1.366667 5.0 41.0 77.0

Other Equipment 0.069767 0.250000 3.0 8.0 43.0

Moving
violation 0.014493 1.344828 3.0 117.0 207.0

Other 0.076923 1.000000 1.0 6.0 13.0

White DUI 0.192364 0.455026 131.0 172.0 681.0

Equipment 0.012233 0.190486 599.0 7736.0 48965.0 40

Moving
violation 0.008635 0.732720 1747.0 84797.0 202321.0 115

Other 0.058378 1.476672 547.0 5254.0 9370.0 3

Other
(non-

mapped)
0.000000 1.000000 0.0 1.0 2.0

Out[36]:

arrest_rate citations_per_warning n_arrests n_citations n_total n_warning

is_white violation

False Equipment 0.024465 0.195049 40.0 260.0 1635.0 1333

Moving
violation 0.011964 1.045541 117.0 4936.0 9779.0 4721

Other 0.047739 1.673759 19.0 236.0 398.0 141

True Equipment 0.012233 0.190486 599.0 7736.0 48965.0 40612

Moving
violation 0.008635 0.732720 1747.0 84797.0 202321.0 115729

Other 0.058378 1.476672 547.0 5254.0 9370.0 3558

Out[37]: <matplotlib.axes._subplots.AxesSubplot at 0x7f1d0969dc18>

Out[41]: hit_rate            0.796262 

n_hits           2599.000000 

n_searches       3264.000000 

n_stops        273181.000000 

search_rate         0.011948 

dtype: float64

Out[42]:

hit_rate n_hits n_searches n_stops search_rate

driver_gender

F 0.788820 508.0 644.0 99111.0 0.006498

M 0.798092 2091.0 2620.0 174070.0 0.015051

Out[43]:

hit_rate n_hits n_searches n_stops search_rate

driver_age

(15, 20] 0.846954 570.0 673.0 27443.0 0.024524

(20, 25] 0.837488 840.0 1003.0 43310.0 0.023159

(25, 30] 0.788800 493.0 625.0 34794.0 0.017963

(30, 35] 0.766756 286.0 373.0 27784.0 0.013425

(35, 40] 0.744186 160.0 215.0 23241.0 0.009251

(40, 45] 0.692913 88.0 127.0 24083.0 0.005273

(45, 50] 0.575472 61.0 106.0 24117.0 0.004395

(50, 55] 0.697368 53.0 76.0 22532.0 0.003373

(55, 60] 0.833333 30.0 36.0 17522.0 0.002055

(60, 65] 0.461538 6.0 13.0 12520.0 0.001038

Out[44]:

hit_rate n_hits n_searches n_stops search_rate

driver_race

Asian 0.785714 22.0 28.0 3446.0 0.008125

Black 0.686620 195.0 284.0 5571.0 0.050978

Hispanic 0.644231 67.0 104.0 2562.0 0.040593

Other 0.600000 6.0 10.0 263.0 0.038023

White 0.813601 2309.0 2838.0 261339.0 0.010859

Out[46]:

Out[61]:


