
Preamble
In this notebook, we'll take an initial look at the Home Credit default risk machine learning
competition currently hosted on Kaggle. The objective of this competition is to use historical loan
application data to predict whether or not an applicant will be able to repay a loan. This is a
standard [supervised classification challenge]:

Supervised: The labels are included in the training data and the goal is to train a model to
learn to predict the labels from the features
Classification: The label is a binary variable, 0 (will repay loan on time), 1 (will have difficulty
repaying loan)

Data
The data is provided by Home Credit, a service dedicated to provided lines of credit (loans) to the
unbanked population.

There are 7 different sources of data:

application_train/application_test: the main training and testing data with information about
each loan application at Home Credit. Every loan has its own row and is identified by the
feature SK_ID_CURR . The training application data comes with the TARGET  indicating 0: the
loan was repaid or 1: the loan was not repaid.
bureau: data concerning client's previous credits from other financial institutions. Each previous
credit has its own row in bureau, but one loan in the application data can have multiple
previous credits.
bureau_balance: monthly data about the previous credits in bureau. Each row is one month of
a previous credit, and a single previous credit can have multiple rows, one for each month of
the credit length.
previous_application: previous applications for loans at Home Credit of clients who have loans
in the application data. Each current loan in the application data can have multiple previous
loans. Each previous application has one row and is identified by the feature SK_ID_PREV .
POS_CASH_BALANCE: monthly data about previous point of sale or cash loans clients have
had with Home Credit. Each row is one month of a previous point of sale or cash loan, and a
single previous loan can have many rows.
credit_card_balance: monthly data about previous credit cards clients have had with Home
Credit. Each row is one month of a credit card balance, and a single credit card can have many
rows.
installments_payment: payment history for previous loans at Home Credit. There is one row for
every made payment and one row for every missed payment.

This diagram shows how all of the data is related:

Moreover, we are provided with the definitions of all the columns (in 
HomeCredit_columns_description.csv )

We will stick to using only the main application training and testing data. Although if we want to
have any hope of seriously competing, we need to use all the data, for now we will stick to one file
which should be more manageable. This will let us establish a baseline that we can then improve
upon. With these projects, it's best to build up an understanding of the problem a little at a time
rather than diving all the way in and getting completely lost!

ROC AUC metric
Once we have a grasp of the data (reading through the column descriptions helps immensely), we
need to understand the metric by which our submission is judged. In this case, it's a common
classification metric known as the Receiver Operating Characteristic Area Under the Curve (ROC
AUC, also sometimes called AUROC).

The Reciever Operating Characteristic (ROC) curve graphs the true positive rate versus the
false positive rate:

A single line on the graph indicates the curve for a single model, and movement along a line
indicates changing the threshold used for classifying a positive instance. The threshold starts at 0
and goes to 1. A curve that is to the left and above another curve indicates a better model. For
example, the blue model is better than the red model, which is better than the black diagonal line
which indicates a naive random guessing model.

The Area Under the Curve (AUC) is simply the area under the ROC curve. (This is the integral
of the curve.) This metric is between 0 and 1 with a better model scoring higher. A model that
simply guesses at random will have an ROC AUC of 0.5.

When we measure a classifier according to the ROC AUC, we do not generation 0 or 1
predictions, but rather a probability between 0 and 1. This may be confusing because we
usually like to think in terms of accuracy, but when we get into problems with inbalanced classes
(we will see this is the case), accuracy is not the best metric. For example, if I wanted to build a
model that could detect terrorists with 99.9999% accuracy, I would simply make a model that
predicted every single person was not a terrorist. Clearly, this would not be effective (the recall
would be zero) hence, we use more advanced metrics such as ROC AUC or the F1 score to more
accurately reflect the performance of a classifier. A model with a high ROC AUC will also have a
high accuracy, but the ROC AUC is a better representation of model performance.

Not that we know the background of the data we are using and the metric to maximize, let's get into
exploring the data.

Loading Packages
We are using a typical data science stack: numpy , pandas , sklearn , matplotlib .

In [0]: # numpy and pandas for data manipulation 

import numpy as np 

import pandas as pd  

 

# sklearn preprocessing for dealing with categorical variables 

from sklearn.preprocessing import LabelEncoder 

 

# File system manangement 

import os 

 

# Suppress warnings  

import warnings 

warnings.filterwarnings('ignore') 

 

# matplotlib and seaborn for plotting 

import matplotlib.pyplot as plt 

import seaborn as sns 

Import Dataset form Kaggle

In [0]: # Colab's file access feature 

from google.colab import files 

 

# retrieve uploaded file 

uploaded = files.upload() 

 

# print results 

for fn in uploaded.keys(): 

  print('User uploaded file "{name}" with length {length} bytes'.format( 

      name=fn, length=len(uploaded[fn]))) 

   

# then move kaggle.json into the folder where the API expects to find it. 

!mkdir -p ~/.kaggle/ && mv kaggle.json ~/.kaggle/ && chmod 600 ~/.kaggle/kaggl

e.json 

In [0]: # download home credit default risk dataset 

!kaggle competitions download -c home-credit-default-risk 

In [0]: !ls 

In [0]: !unzip application_train.csv.zip 

!unzip application_test.csv.zip 

In [0]: # Training data 

app_train = pd.read_csv('application_train.csv') 

print('Training data shape: ', app_train.shape) 

app_train.head() 

The training data has 307511 observations (each one a separate loan) and 122 features
(variables) including the TARGET  (the label we want to predict).

In [0]: # Testing data features 

app_test = pd.read_csv('application_test.csv') 

print('Testing data shape: ', app_test.shape) 

app_test.head() 

The test set is considerably smaller without a TARGET  column.

Exploratory Data Analysis (EDA)
The process where we calculate statistics and make plots to find trends, anomalies, patterns, or
relationships within the data. The goal of EDA is to learn what our data can tell us. It generally
starts out with a high level overview, then narrows in to specific areas as we find intriguing areas of
the data. The findings may be interesting in their own right, or they can be used to inform our
modeling choices, such as by helping us decide which features to use.

Examine the Distribution of the Target Column
The target is what we are asked to predict: either a 0 for the loan was repaid on time, or a 1
indicating the client had payment difficulties. We can first examine the number of loans falling into
each category.

In [0]: app_train['TARGET'].value_counts() 

In [0]: app_train['TARGET'].astype(int).plot.hist() 

From this information, we see this is an imbalanced class problem. There are far more loans that
were repaid on time than loans that were not repaid. Once we get into more sophisticated machine
learning models, we can weight the classes by their representation in the data to reflect this
imbalance.

Examine Missing Values
Next we can look at the number and percentage of missing values in each column.

In [0]: # Function to calculate missing values by column  

def missing_values_table(df): 

        # Total missing values 

        mis_val = df.isnull().sum() 

         

        # Percentage of missing values 

        mis_val_percent = 100 * df.isnull().sum() / len(df) 

         

        # Make a table with the results 

        mis_val_table = pd.concat([mis_val, mis_val_percent], axis=1) 

         

        # Rename the columns 

        mis_val_table_ren_columns = mis_val_table.rename( 

        columns = {0 : 'Missing Values', 1 : '% of Total Values'}) 

         

        # Sort the table by percentage of missing descending 

        mis_val_table_ren_columns = mis_val_table_ren_columns[ 

            mis_val_table_ren_columns.iloc[:,1] != 0].sort_values( 

        '% of Total Values', ascending=False).round(1) 

         

        # Print some summary information 

        print ("Your selected dataframe has " + str(df.shape[1]) + " columns.

\n"       

            "There are " + str(mis_val_table_ren_columns.shape[0]) + 

              " columns that have missing values.") 

         

        # Return the dataframe with missing information 

        return mis_val_table_ren_columns 

In [0]: # Missing values statistics 

missing_values = missing_values_table(app_train) 

missing_values.head() 

When it comes time to build our machine learning models, we will have to fill in these missing
values (known as imputation). In later work, we will use models such as XGBoost that can handle
missing values with no need for imputation. Another option would be to drop columns with a high
percentage of missing values, although it is impossible to know ahead of time if these columns will
be helpful to our model. Therefore, we will keep all of the columns for now.

Column Types
Number of columns of each data type. int64  and float64  are numeric variables (which can be
either discrete or continuous). object  columns contain strings and are categorical features. .

In [0]: # Number of each type of column 

app_train.dtypes.value_counts() 

Number of unique entries in each of the object  (categorical) columns.

In [0]: # Number of unique classes in each object column 

app_train.select_dtypes('object').apply(pd.Series.nunique, axis = 0) 

Most of the categorical variables have a relatively small number of unique entries. We will need to
find a way to deal with these categorical variables!

Encoding Categorical Variables
Before we go any further, we need to deal with pesky categorical variables. A machine learning
model unfortunately cannot deal with categorical variables (except for some models such as
LightGBM). Therefore, we have to find a way to encode (represent) these variables as numbers
before handing them off to the model. There are two main ways to carry out this process:

Label encoding: assign each unique category in a categorical variable with an integer. No
new columns are created. An example is shown below

One-hot encoding: create a new column for each unique category in a categorical variable.
Each observation recieves a 1 in the column for its corresponding category and a 0 in all other
new columns.

The problem with label encoding is that it gives the categories an arbitrary ordering. The value
assigned to each of the categories is random and does not reflect any inherent aspect of the
category. In the example above, programmer recieves a 4 and data scientist a 1, but if we did the
same process again, the labels could be reversed or completely different. The actual assignment of
the integers is arbitrary. Therefore, when we perform label encoding, the model might use the
relative value of the feature (for example programmer = 4 and data scientist = 1) to assign weights
which is not what we want. If we only have two unique values for a categorical variable (such as
Male/Female), then label encoding is fine, but for more than 2 unique categories, one-hot
encoding is the safe option.

There is some debate about the relative merits of these approaches, and some models can deal
with label encoded categorical variables with no issues. For categorical variables with many
classes, one-hot encoding is the safest approach because it does not impose arbitrary values to
categories. The only downside to one-hot encoding is that the number of features
(dimensions of the data) can explode with categorical variables with many categories. To
deal with this, we may consider PCA or other dimensionality reduction methods to reduce the
number of dimensions (while still trying to preserve information).

In this notebook, we will use Label Encoding for any categorical variables with only 2 categories
and One-Hot Encoding for any categorical variables with more than 2 categories. This process may
need to change as we get further into the project, but for now, we will see where this gets us. (We
will also not use any dimensionality reduction in this notebook but will explore in future iterations).

Label Encoding and One-Hot Encoding

Let's implement the policy described above: for any categorical variable ( dtype == object ) with
2 unique categories, we will use label encoding, and for any categorical variable with more than 2
unique categories, we will use one-hot encoding.

For label encoding, we use the Scikit-Learn LabelEncoder  and for one-hot encoding, the
pandas get_dummies(df)  function.

In [0]: # Preview shape of original data before label and one-hot encoding 

app_train.shape, app_test.shape 

In [0]: # Create a label encoder object 

le = LabelEncoder() 

le_count = 0 

 

# Iterate through the columns 

for col in app_train: 

    if app_train[col].dtype == 'object': 

        # If 2 or fewer unique categories 

        if len(list(app_train[col].unique())) <= 2: 

            # Train on the training data 

            le.fit(app_train[col]) 

            # Transform both training and testing data 

            app_train[col] = le.transform(app_train[col]) 

            app_test[col] = le.transform(app_test[col]) 

             

            # Keep track of how many columns were label encoded 

            le_count += 1 

             

print('%d columns were label encoded.' % le_count) 

In [0]: # Create one-hot encoding of objects 

app_train = pd.get_dummies(app_train) 

app_test = pd.get_dummies(app_test) 

 

print('Training Features shape: ', app_train.shape) 

print('Testing Features shape: ', app_test.shape) 

The number of columns has grown due to One-Hot Encoding.

Aligning Training and Testing Datasets
There need to be the same features (columns) in both the training and testing data. One-hot
encoding has created more columns in the training data because there were some categorical
variables with categories not represented in the testing data. To remove the columns in the training
data that are not in the testing data, we need to align  the dataframes. Firstly, we extract the
target column from the training data (because this is not in the testing data but, we need to keep
this information). When we do the align, we must make sure to set axis = 1  to align the
dataframes based on the columns and not on the rows!

In [0]: train_labels = app_train['TARGET'] 

 

# Align the training and testing data, keep only columns present in both dataf

rames 

app_train, app_test = app_train.align(app_test, join = 'inner', axis = 1) 

 

# Add the target back in 

app_train['TARGET'] = train_labels 

 

print('Training Features shape: ', app_train.shape) 

print('Testing Features shape: ', app_test.shape) 

The training and testing datasets now have the same features which is required for machine
learning. The number of features has grown significantly due to one-hot encoding. At some point
we probably will want to try dimensionality reduction (removing features that are not relevant) to
reduce the size of the datasets.

Anomalies
These may be due to mis-typed numbers, errors in measuring equipment, or they could be valid
but extreme measurements. One way to support anomalies quantitatively is by looking at the
statistics of a column using the describe  method. The numbers in the DAYS_BIRTH  column are
negative because they are recorded relative to the current loan application. To see these stats in
years, we can mutliple by -1 and divide by the number of days in a year:

In [0]: (app_train['DAYS_BIRTH'] / -365).describe() 

Those ages look reasonable. There are no outliers for the age on either the high or low end. How
about the days of employment?

In [0]: (app_train['DAYS_EMPLOYED'] / -365).describe() 

That doesn't look right! The minumn value (besides being negitive) is about 1000 years!

In [0]: app_train['DAYS_EMPLOYED'].plot.hist(title = 'Days Employment Histogram') 

plt.xlabel('Days Employment') 

Just out of curiousity, let's subset the anomalous clients and see if they tend to have higher or low
rates of default than the rest of the clients.

In [0]: anom = app_train[app_train['DAYS_EMPLOYED'] == 365243] 

non_anom = app_train[app_train['DAYS_EMPLOYED'] != 365243] 

print('The non-anomalies default on %0.2f%% of loans' % (100 * non_anom['TARGE

T'].mean())) 

print('The anomalies default on %0.2f%% of loans' % (100 * anom['TARGET'].mean

())) 

print('There are %d anomalous days of employment' % len(anom)) 

Well that is extremely interesting! It turns out that the anomalies have a lower rate of default.

Handling the anomalies depends on the exact situation, with no set rules. One of the safest
approaches is just to set the anomalies to a missing value and then have them filled in (using
Imputation) before machine learning. In this case, since all the anomalies have the exact same
value, we want to fill them in with the same value in case all of these loans share something in
common. The anomalous values seem to have some importance, so we want to tell the machine
learning model if we did in fact fill in these values. As a solution, we will fill in the anomalous values
with not a number ( np.nan ) and then create a new boolean column indicating whether or not the
value was anomalous.

In [0]: # Create an anomalous flag column 

app_train['DAYS_EMPLOYED_ANOM'] = app_train["DAYS_EMPLOYED"] == 365243 

 

# Replace the anomalous values with nan 

app_train['DAYS_EMPLOYED'].replace({365243: np.nan}, inplace = True) 

 

app_train['DAYS_EMPLOYED'].plot.hist(title = 'Days Employment Histogram') 

plt.xlabel('Days Employment') 

The distribution looks to be much more in line with what we would expect, and we also have
created a new column to tell the model that these values were originally anomalous (becuase we
will have to fill in the nans with some value, probably the median of the column). The other columns
with DAYS  in the dataframe look to be about what we expect with no obvious outliers.

As an extremely important note, anything we do to the training data we also have to do to the
testing data. Let's make sure to create the new column and fill in the existing column with np.nan
in the testing data.

In [0]: app_test['DAYS_EMPLOYED_ANOM'] = app_test["DAYS_EMPLOYED"] == 365243 

app_test["DAYS_EMPLOYED"].replace({365243: np.nan}, inplace = True) 

 

print('There are %d anomalies in the test data out of %d entries' % (app_test[

"DAYS_EMPLOYED_ANOM"].sum(), len(app_test))) 

Correlations

Now that we have dealt with the categorical variables and the outliers, let's continue with the EDA.
One way to try and understand the data is by looking for correlations between the features and the
target. We can calculate the Pearson correlation coefficient between every variable and the target
using the .corr  dataframe method.

The correlation coefficient is not the greatest method to represent "relevance" of a feature, but it
does give us an idea of possible relationships within the data. Some general interpretations of the
absolute value of the correlation coefficent are:

.00-.19 “very weak”

.20-.39 “weak”

.40-.59 “moderate”

.60-.79 “strong”

.80-1.0 “very strong”

In [0]: # Find correlations with the target and sort 

correlations = app_train.corr()['TARGET'].sort_values() 

 

# Display correlations 

print('Most Positive Correlations:\n', correlations.tail(15)) 

print('\nMost Negative Correlations:\n', correlations.head(15)) 

Let's take a look at some of more significant correlations: the DAYS_BIRTH  is the most positive
correlation. (except for TARGET  because the correlation of a variable with itself is always 1!)
Looking at the documentation, DAYS_BIRTH  is the age in days of the client at the time of the loan
in negative days (for whatever reason!). The correlation is positive, but the value of this feature is
actually negative, meaning that as the client gets older, they are less likely to default on their loan
(ie the target == 0). That's a little confusing, so we will take the absolute value of the feature and
then the correlation will be negative.

Effect of Age on Repayment

In [0]: # Find the correlation of the positive days since birth and target 

app_train['DAYS_BIRTH'] = abs(app_train['DAYS_BIRTH']) 

app_train['DAYS_BIRTH'].corr(app_train['TARGET']) 

As the client gets older, there is a negative linear relationship with the target meaning that as clients
get older, they tend to repay their loans on time more often.

Let's start looking at this variable. First, we can make a histogram of the age. We will put the x axis
in years to make the plot a little more understandable.

In [0]: # Set the style of plots 

plt.style.use('fivethirtyeight') 

 

# Plot the distribution of ages in years 

plt.hist(app_train['DAYS_BIRTH'] / 365, edgecolor = 'k', bins = 25) 

plt.title('Age of Client'), plt.xlabel('Age (years)'), plt.ylabel('Count') 

By itself, the distribution of age does not tell us much other than that there are no outliers as all the
ages are reasonable. To visualize the effect of the age on the target, we will next make a kernel
density estimation plot (KDE) colored by the value of the target. A kernel density estimate plot
shows the distribution of a single variable and can be thought of as a smoothed histogram (it is
created by computing a kernel, usually a Gaussian, at each data point and then averaging all the
individual kernels to develop a single smooth curve). We will use the seaborn kdeplot  for this
graph.

In [0]: plt.figure(figsize = (10, 8)) 

 

# KDE plot of loans that were repaid on time 

sns.kdeplot(app_train.loc[app_train['TARGET'] == 0, 'DAYS_BIRTH'] / 365, label 

= 'target == 0') 

 

# KDE plot of loans which were not repaid on time 

sns.kdeplot(app_train.loc[app_train['TARGET'] == 1, 'DAYS_BIRTH'] / 365, label 

= 'target == 1') 

 

# Labeling of plot 

plt.xlabel('Age (years)'), plt.ylabel('Density'), plt.title('Distribution of A

ges') 

The target == 1 curve skews towards the younger end of the range. Although this is not a
significant correlation (-0.07 correlation coefficient), this variable is likely going to be useful in a
machine learning model because it does affect the target. Let's look at this relationship in another
way: average failure to repay loans by age bracket.

To make this graph, first we cut  the age category into bins of 5 years each. Then, for each bin,
we calculate the average value of the target, which tells us the ratio of loans that were not repaid in
each age category.

In [0]: # Age information into a separate dataframe 

age_data = app_train[['TARGET', 'DAYS_BIRTH']] 

age_data['YEARS_BIRTH'] = age_data['DAYS_BIRTH'] / 365 

 

# Bin the age data 

age_data['YEARS_BINNED'] = pd.cut(age_data['YEARS_BIRTH'], bins = np.linspace(

20, 70, num = 11)) 

age_data.head(10) 

In [0]: # Group by the bin and calculate averages 

age_groups  = age_data.groupby('YEARS_BINNED').mean() 

age_groups 

In [0]: plt.figure(figsize = (8, 8)) 

 

# Graph the age bins and the average of the target as a bar plot 

plt.bar(age_groups.index.astype(str), 100 * age_groups['TARGET']) 

 

# Plot labeling 

plt.xticks(rotation = 75); plt.xlabel('Age Group (years)'); plt.ylabel('Failur

e to Repay (%)') 

plt.title('Failure to Repay by Age Group') 

There is a clear trend: younger applicants are more likely to not repay the loan! The rate of failure
to repay is above 10% for the youngest three age groups and beolow 5% for the oldest age group.

This is information that could be directly used by the bank: because younger clients are less likely
to repay the loan, maybe they should be provided with more guidance or financial planning tips.
This does not mean the bank should discriminate against younger clients, but it would be smart to
take precautionary measures to help younger clients pay on time.

Exterior Sources

The 3 variables with the strongest negative correlations with the target are EXT_SOURCE_1 , 
EXT_SOURCE_2 , and EXT_SOURCE_3 . According to the documentation, these features represent

a "normalized score from external data source". I'm not sure what this exactly means, but it may be
a cumulative sort of credit rating made using numerous sources of data.

Let's take a look at these variables.

First, we can show the correlations of the EXT_SOURCE  features with the target and with each
other.

In [0]: # Extract the EXT_SOURCE variables and show correlations 

ext_data = app_train[['TARGET', 'EXT_SOURCE_1', 'EXT_SOURCE_2', 'EXT_SOURCE_3'

, 'DAYS_BIRTH']] 

ext_data_corrs = ext_data.corr() 

ext_data_corrs 

In [0]: plt.figure(figsize = (8, 6)) 

 

# Heatmap of correlations 

sns.heatmap(ext_data_corrs, cmap = plt.cm.RdYlBu_r, vmin = -0.25, annot = True

, vmax = 0.6) 

plt.title('Correlation Heatmap') 

All three EXT_SOURCE  featureshave negative correlations with the target, indicating that as the
value of the EXT_SOURCE  increases, the client is more likely to repay the loan. We can also see
that DAYS_BIRTH  is positively correlated with EXT_SOURCE_1  indicating that maybe one of the
factors in this score is the client age.

Next we can look at the distribution of each of these features colored by the value of the target.
This will let us visualize the effect of this variable on the target.

In [0]: plt.figure(figsize = (10, 12)) 

 

# iterate through the sources 

for i, source in enumerate(['EXT_SOURCE_1', 'EXT_SOURCE_2', 'EXT_SOURCE_3']): 

     

    # create a new subplot for each source 

    plt.subplot(3, 1, i + 1) 

    # plot repaid loans 

    sns.kdeplot(app_train.loc[app_train['TARGET'] == 0, source], label = 'targ

et == 0') 

    # plot loans that were not repaid 

    sns.kdeplot(app_train.loc[app_train['TARGET'] == 1, source], label = 'targ

et == 1') 

     

    # Label the plots 

    plt.title('Distribution of %s by Target Value' % source) 

    plt.xlabel('%s' % source), plt.ylabel('Density') 

     

plt.tight_layout(h_pad = 2.5) 

     

EXT_SOURCE_3  displays the greatest difference between the values of the target. We can clearly
see that this feature has some relationship to the likelihood of an applicant to repay a loan. The
relationship is not very strong (in fact they are all considered very weak, but these variables will still
be useful for a machine learning model to predict whether or not an applicant will repay a loan on
time.

Pairs Plot
As a final exploratory plot, we can make a pairs plot of the EXT_SOURCE  variables and the 
DAYS_BIRTH  variable. The Pairs Plot is a great exploration tool because it lets us see

relationships between multiple pairs of variables as well as distributions of single variables. Here we
are using the seaborn visualization library and the PairGrid function to create a Pairs Plot with
scatterplots on the upper triangle, histograms on the diagonal, and 2D kernel density plots and
correlation coefficients on the lower triangle.

If you don't understand this code, that's all right! Plotting in Python can be overly complex, and for
anything beyond the simplest graphs, I usually find an existing implementation and adapt the code
(don't repeat yourself)!

In [0]: # Copy the data for plotting 

plot_data = ext_data.drop(columns = ['DAYS_BIRTH']).copy() 

 

# Add in the age of the client in years 

plot_data['YEARS_BIRTH'] = age_data['YEARS_BIRTH'] 

 

# Drop na values and limit to first 100000 rows 

plot_data = plot_data.dropna().loc[:100000, :] 

 

# Function to calculate correlation coefficient between two columns 

def corr_func(x, y, **kwargs): 

    r = np.corrcoef(x, y)[0][1] 

    ax = plt.gca() 

    ax.annotate("r = {:.2f}".format(r), 

                xy=(.2, .8), xycoords=ax.transAxes, 

                size = 20) 

 

# Create the pairgrid object 

grid = sns.PairGrid(data = plot_data, size = 3, diag_sharey=False, 

                    hue = 'TARGET',  

                    vars = [x for x in list(plot_data.columns) if x != 'TARGE

T']) 

 

# Upper is a scatter plot 

grid.map_upper(plt.scatter, alpha = 0.2) 

 

# Diagonal is a histogram 

grid.map_diag(sns.kdeplot) 

 

# Bottom is density plot 

grid.map_lower(sns.kdeplot, cmap = plt.cm.OrRd_r) 

 

plt.suptitle('Ext Source and Age Features Pairs Plot', size = 32, y = 1.05) 

In this plot, the red indicates loans that were not repaid and the blue are loans that are paid. We
can see the different relationships within the data. There does appear to be a moderate positive
linear relationship between the EXT_SOURCE_1  and the DAYS_BIRTH  (or equivalently 
YEARS_BIRTH ), indicating that this feature may take into account the age of the client.

Feature Engineering
This represents one of the patterns in machine learning: feature engineering has a greater return
on investment than model building and hyperparameter tuning. This is a great article on the
subject). As Andrew Ng is fond of saying: "applied machine learning is basically feature
engineering."

While choosing the right model and optimal settings are important, the model can only learn from
the data it is given. Making sure this data is as relevant to the task as possible is the job of the data
scientist (and maybe some automated tools to help us out).

Feature engineering refers to a geneal process and can involve both feature construction: adding
new features from the existing data, and feature selection: choosing only the most important
features or other methods of dimensionality reduction. There are many techniques we can use to
both create features and select features.

We will do a lot of feature engineering when we start using the other data sources, but in this
notebook we will try only two simple feature construction methods:

Polynomial features
Domain knowledge features

Polynomial Features
One simple feature construction method is called polynomial features. In this method, we make
features that are powers of existing features as well as interaction terms between existing features.
For example, we can create variables EXT_SOURCE_1^2  and EXT_SOURCE_2^2  and also
variables such as EXT_SOURCE_1  x EXT_SOURCE_2 , EXT_SOURCE_1  x EXT_SOURCE_2^2 , 
EXT_SOURCE_1^2  x EXT_SOURCE_2^2 , and so on. These features that are a combination of

multiple individual variables are called interaction terms because they capture the interactions
between variables. In other words, while two variables by themselves may not have a strong
influence on the target, combining them together into a single interaction variable might show a
relationship with the target. Interaction terms are commonly used in statistical models to capture
the effects of multiple variables, but I do not see them used as often in machine learning.
Nonetheless, we can try out a few to see if they might help our model to predict whether or not a
client will repay a loan.

Jake VanderPlas writes about polynomial features in his excellent book Python for Data Science for
those who want more information.

In the following code, we create polynomial features using the EXT_SOURCE  variables and the 
DAYS_BIRTH  variable. Scikit-Learn has a useful class called PolynomialFeatures  that creates

the polynomials and the interaction terms up to a specified degree. We can use a degree of 3 to
see the results (when we are creating polynomial features, we want to avoid using too high of a
degree, both because the number of features scales exponentially with the degree, and because
we can run into problems with overfitting).

In [0]: # Make a new dataframe for polynomial features 

poly_features = app_train[['EXT_SOURCE_1', 'EXT_SOURCE_2', 'EXT_SOURCE_3', 'DA

YS_BIRTH', 'TARGET']] 

poly_features_test = app_test[['EXT_SOURCE_1', 'EXT_SOURCE_2', 'EXT_SOURCE_3', 

'DAYS_BIRTH']] 

 

# imputer for handling missing values 

from sklearn.preprocessing import Imputer 

imputer = Imputer(strategy = 'median') 

 

poly_target = poly_features['TARGET'] 

 

poly_features = poly_features.drop(columns = ['TARGET']) 

 

# Need to impute missing values 

poly_features = imputer.fit_transform(poly_features) 

poly_features_test = imputer.transform(poly_features_test) 

 

from sklearn.preprocessing import PolynomialFeatures 

                                   

# Create the polynomial object with specified degree 

poly_transformer = PolynomialFeatures(degree = 3) 

In [0]: # Train the polynomial features 

poly_transformer.fit(poly_features) 

 

# Transform the features 

poly_features = poly_transformer.transform(poly_features) 

poly_features_test = poly_transformer.transform(poly_features_test) 

print('Polynomial Features shape: ', poly_features.shape) 

This creates a considerable number of new features. To get the names we have to use the
polynomial features get_feature_names  method.

In [0]: poly_transformer.get_feature_names(input_features = ['EXT_SOURCE_1', 'EXT_SOUR

CE_2', 'EXT_SOURCE_3', 'DAYS_BIRTH'])[:15] 

There are 35 features with individual features raised to powers up to degree 3 and interaction
terms. Now, we can see whether any of these new features are correlated with the target.

In [0]: # Create a dataframe of the features  

poly_features = pd.DataFrame(poly_features,  

                             columns = poly_transformer.get_feature_names(['EX

T_SOURCE_1', 'EXT_SOURCE_2',  

                                                                           'EX

T_SOURCE_3', 'DAYS_BIRTH'])) 

 

# Add in the target 

poly_features['TARGET'] = poly_target 

 

# Find the correlations with the target 

poly_corrs = poly_features.corr()['TARGET'].sort_values() 

 

# Display most negative and most positive 

print(poly_corrs.head(10)) 

print(poly_corrs.tail(5)) 

Several of the new variables have a greater (in terms of absolute magnitude) correlation with the
target than the original features. When we build machine learning models, we can try with and
without these features to determine if they actually help the model learn.

We will add these features to a copy of the training and testing data and then evaluate models with
and without the features. Many times in machine learning, the only way to know if an approach will
work is to try it out!

In [0]: # Put test features into dataframe 

poly_features_test = pd.DataFrame(poly_features_test,  

                                  columns = poly_transformer.get_feature_names

(['EXT_SOURCE_1', 'EXT_SOURCE_2',  

                                                                               

'EXT_SOURCE_3', 'DAYS_BIRTH'])) 

 

# Merge polynomial features into training dataframe 

poly_features['SK_ID_CURR'] = app_train['SK_ID_CURR'] 

app_train_poly = app_train.merge(poly_features, on = 'SK_ID_CURR', how = 'lef

t') 

 

# Merge polnomial features into testing dataframe 

poly_features_test['SK_ID_CURR'] = app_test['SK_ID_CURR'] 

app_test_poly = app_test.merge(poly_features_test, on = 'SK_ID_CURR', how = 'l

eft') 

 

# Align the dataframes 

app_train_poly, app_test_poly = app_train_poly.align(app_test_poly, join = 'in

ner', axis = 1) 

 

# Print out the new shapes 

print('Training data with polynomial features shape: ', app_train_poly.shape) 

print('Testing data with polynomial features shape:  ', app_test_poly.shape) 

Domain Knowledge Features
Maybe it's not entirely correct to call this "domain knowledge" because I'm not a credit expert, but
perhaps we could call this "attempts at applying limited financial knowledge". In this frame of mind,
we can make a couple features that attempt to capture what we think may be important for telling
whether a client will default on a loan. Here I'm going to use five features that were inspired by this
script by Aguiar:

CREDIT_INCOME_PERCENT : the percentage of the credit amount relative to a client's income
ANNUITY_INCOME_PERCENT : the percentage of the loan annuity relative to a client's income
CREDIT_TERM : the length of the payment in months (since the annuity is the monthly amount

due
DAYS_EMPLOYED_PERCENT : the percentage of the days employed relative to the client's age

Again, thanks to Aguiar and his great script for exploring these features.

In [0]: app_train_domain = app_train.copy() 

app_test_domain = app_test.copy() 

 

app_train_domain['CREDIT_INCOME_PERCENT'] = app_train_domain['AMT_CREDIT'] / a

pp_train_domain['AMT_INCOME_TOTAL'] 

app_train_domain['ANNUITY_INCOME_PERCENT'] = app_train_domain['AMT_ANNUITY'] / 

app_train_domain['AMT_INCOME_TOTAL'] 

app_train_domain['CREDIT_TERM'] = app_train_domain['AMT_ANNUITY'] / app_train_

domain['AMT_CREDIT'] 

app_train_domain['DAYS_EMPLOYED_PERCENT'] = app_train_domain['DAYS_EMPLOYED'] 

/ app_train_domain['DAYS_BIRTH'] 

In [0]: app_test_domain['CREDIT_INCOME_PERCENT'] = app_test_domain['AMT_CREDIT'] / app

_test_domain['AMT_INCOME_TOTAL'] 

app_test_domain['ANNUITY_INCOME_PERCENT'] = app_test_domain['AMT_ANNUITY'] / a

pp_test_domain['AMT_INCOME_TOTAL'] 

app_test_domain['CREDIT_TERM'] = app_test_domain['AMT_ANNUITY'] / app_test_dom

ain['AMT_CREDIT'] 

app_test_domain['DAYS_EMPLOYED_PERCENT'] = app_test_domain['DAYS_EMPLOYED'] / 

app_test_domain['DAYS_BIRTH'] 

Visualize New Variables

We should explore these domain knowledge variables visually in a graph. For all of these, we will
make the same KDE plot colored by the value of the TARGET .

In [0]: plt.figure(figsize = (12, 20)) 

# iterate through the new features 

for i, feature in enumerate(['CREDIT_INCOME_PERCENT', 'ANNUITY_INCOME_PERCENT'

, 'CREDIT_TERM', 'DAYS_EMPLOYED_PERCENT']): 

     

    # create a new subplot for each source 

    plt.subplot(4, 1, i + 1) 

    # plot repaid loans 

    sns.kdeplot(app_train_domain.loc[app_train_domain['TARGET'] == 0, feature

], label = 'target == 0') 

    # plot loans that were not repaid 

    sns.kdeplot(app_train_domain.loc[app_train_domain['TARGET'] == 1, feature

], label = 'target == 1') 

     

    # Label the plots 

    plt.title('Distribution of %s by Target Value' % feature) 

    plt.xlabel('%s' % feature); plt.ylabel('Density') 

     

plt.tight_layout(h_pad = 2.5) 

It's hard to say ahead of time if these new features will be useful. The only way to tell for sure is to
try them out!

Baseline Evalustion
For a naive baseline, we could guess the same value for all examples on the testing set. We are
asked to predict the probability of not repaying the loan, so if we are entirely unsure, we would
guess 0.5 for all observations on the test set. This will get us a Reciever Operating Characteristic
Area Under the Curve (AUC ROC) of 0.5 in the competition (random guessing on a classification
task will score a 0.5).

Since we already know what score we are going to get, we don't really need to make a naive
baseline guess. Let's use a slightly more sophisticated model for our actual baseline: Logistic
Regression.

Logistic Regression Implementation
Here I will focus on implementing the model rather than explaining the details, but for those who
want to learn more about the theory of machine learning algorithms, I recommend both An
Introduction to Statistical Learning and Hands-On Machine Learning with Scikit-Learn and
TensorFlow. Both of these books present the theory and also the code needed to make the models
(in R and Python respectively). They both teach with the mindset that the best way to learn is by
doing, and they are very effective!

To get a baseline, we will use all of the features after encoding the categorical variables. We will
preprocess the data by filling in the missing values (imputation) and normalizing the range of the
features (feature scaling). The following code performs both of these preprocessing steps.

In [0]: from sklearn.preprocessing import MinMaxScaler, Imputer 

 

# Drop the target from the training data 

if 'TARGET' in app_train: 

    train = app_train.drop(columns = ['TARGET']) 

else: 

    train = app_train.copy() 

     

# Feature names 

features = list(train.columns) 

 

# Copy of the testing data 

test = app_test.copy() 

 

# Median imputation of missing values 

imputer = Imputer(strategy = 'median') 

 

# Scale each feature to 0-1 

scaler = MinMaxScaler(feature_range = (0, 1)) 

 

# Fit on the training data 

imputer.fit(train) 

 

# Transform both training and testing data 

train = imputer.transform(train) 

test = imputer.transform(app_test) 

 

# Repeat with the scaler 

scaler.fit(train) 

train = scaler.transform(train) 

test = scaler.transform(test) 

 

print('Training data shape: ', train.shape) 

print('Testing data shape: ', test.shape) 

We will use LogisticRegression from Scikit-Learn for our first model. The only change we will
make from the default model settings is to lower the regularization parameter, C, which controls the
amount of overfitting (a lower value should decrease overfitting). This will get us slightly better
results than the default LogisticRegression , but it still will set a low bar for any future models.

Here we use the familiar Scikit-Learn modeling syntax: we first create the model, then we train the
model using .fit  and then we make predictions on the testing data using .predict_proba
(remember that we want probabilities and not a 0 or 1).

In [0]: from sklearn.linear_model import LogisticRegression 

 

# Make the model with the specified regularization parameter 

log_reg = LogisticRegression(C = 0.0001) 

 

# Train on the training data 

log_reg.fit(train, train_labels) 

Now that the model has been trained, we can use it to make predictions. We want to predict the
probabilities of not paying a loan, so we use the model predict.proba  method. This returns an
m x 2 array where m is the number of observations. The first column is the probability of the target
being 0 and the second column is the probability of the target being 1 (so for a single row, the two
columns must sum to 1). We want the probability the loan is not repaid, so we will select the second
column.

The following code makes the predictions and selects the correct column.

In [0]: # Make predictions 

# Make sure to select the second column only 

log_reg_pred = log_reg.predict_proba(test)[:, 1] 

The predictions must be in the format shown in the sample_submission.csv  file, where there
are only two columns: SK_ID_CURR  and TARGET . We will create a dataframe in this format from
the test set and the predictions called submit .

In [0]: # Submission dataframe 

submit = app_test[['SK_ID_CURR']] 

submit['TARGET'] = log_reg_pred 

 

submit.head() 

The predictions represent a probability between 0 and 1 that the loan will not be repaid. If we were
using these predictions to classify applicants, we could set a probability threshold for determining
that a loan is risky.

In [0]: # Save the submission to a csv file 

submit.to_csv('log_reg_baseline.csv', index = False) 

The submission has now been saved to the virtual environment in which our notebook is running.
To access the submission, at the end of the notebook, we will hit the blue Commit & Run button at
the upper right of the kernel. This runs the entire notebook and then lets us download any files that
are created during the run.

Once we run the notebook, the files created are available in the Versions tab under the Output sub-
tab. From here, the submission files can be submitted to the competition or downloaded. Since
there are several models in this notebook, there will be multiple output files.

The logistic regression baseline should score around 0.671 when submitted.

Improved Model: Random Forest
To try and beat the poor performance of our baseline, we can update the algorithm. Let's try using
a Random Forest on the same training data to see how that affects performance. The Random
Forest is a much more powerful model especially when we use hundreds of trees. We will use 100
trees in the random forest.

In [0]: from sklearn.ensemble import RandomForestClassifier 

 

# Make the random forest classifier 

random_forest = RandomForestClassifier(n_estimators = 100, random_state = 50, 

verbose = 1, n_jobs = -1) 

In [0]: # Train on the training data 

random_forest.fit(train, train_labels) 

 

# Extract feature importances 

feature_importance_values = random_forest.feature_importances_ 

feature_importances = pd.DataFrame({'feature': features, 'importance': feature

_importance_values}) 

 

# Make predictions on the test data 

predictions = random_forest.predict_proba(test)[:, 1] 

In [0]: # Make a submission dataframe 

submit = app_test[['SK_ID_CURR']] 

submit['TARGET'] = predictions 

 

# Save the submission dataframe 

submit.to_csv('random_forest_baseline.csv', index = False) 

These predictions will also be available when we run the entire notebook.

This model should score around 0.678 when submitted.

Make Predictions using Engineered Features

The only way to see if the Polynomial Features and Domain knowledge improved the model is to
train a test a model on these features! We can then compare the submission performance to that
for the model without these features to gauge the effect of our feature engineering.

In [0]: poly_features_names = list(app_train_poly.columns) 

 

# Impute the polynomial features 

imputer = Imputer(strategy = 'median') 

 

poly_features = imputer.fit_transform(app_train_poly) 

poly_features_test = imputer.transform(app_test_poly) 

 

# Scale the polynomial features 

scaler = MinMaxScaler(feature_range = (0, 1)) 

 

poly_features = scaler.fit_transform(poly_features) 

poly_features_test = scaler.transform(poly_features_test) 

 

random_forest_poly = RandomForestClassifier(n_estimators = 100, random_state = 

50, verbose = 1, n_jobs = -1) 

In [0]: # Train on the training data 

random_forest_poly.fit(poly_features, train_labels) 

 

# Make predictions on the test data 

predictions = random_forest_poly.predict_proba(poly_features_test)[:, 1] 

In [0]: # Make a submission dataframe 

submit = app_test[['SK_ID_CURR']] 

submit['TARGET'] = predictions 

 

# Save the submission dataframe 

submit.to_csv('random_forest_baseline_engineered.csv', index = False) 

This model scored 0.678 when submitted to the competition, exactly the same as that without the
engineered features. Given these results, it does not appear that our feature construction helped in
this case.

Testing Domain Features

Now we can test the domain features we made by hand.

In [0]: app_train_domain = app_train_domain.drop(columns = 'TARGET') 

 

domain_features_names = list(app_train_domain.columns) 

 

# Impute the domainnomial features 

imputer = Imputer(strategy = 'median') 

 

domain_features = imputer.fit_transform(app_train_domain) 

domain_features_test = imputer.transform(app_test_domain) 

 

# Scale the domainnomial features 

scaler = MinMaxScaler(feature_range = (0, 1)) 

 

domain_features = scaler.fit_transform(domain_features) 

domain_features_test = scaler.transform(domain_features_test) 

 

random_forest_domain = RandomForestClassifier(n_estimators = 100, random_state 

= 50, verbose = 1, n_jobs = -1) 

 

# Train on the training data 

random_forest_domain.fit(domain_features, train_labels) 

 

# Extract feature importances 

feature_importance_values_domain = random_forest_domain.feature_importances_ 

feature_importances_domain = pd.DataFrame({'feature': domain_features_names, 

'importance': feature_importance_values_domain}) 

 

# Make predictions on the test data 

predictions = random_forest_domain.predict_proba(domain_features_test)[:, 1] 

In [0]: # Make a submission dataframe 

submit = app_test[['SK_ID_CURR']] 

submit['TARGET'] = predictions 

 

# Save the submission dataframe 

submit.to_csv('random_forest_baseline_domain.csv', index = False) 

This scores 0.679 when submitted which probably shows that the engineered features do not help
in this model (however they do help in the Gradient Boosting Model at the end of the notebook).

In later notebooks, we will do more feature engineering by using the information from the other
data sources. From experience, this will definitely help our model!

Model Interpretation: Feature Importances
As a simple method to see which variables are the most relevant, we can look at the feature
importances of the random forest. Given the correlations we saw in the exploratory data analysis,
we should expect that the most important features are the EXT_SOURCE  and the DAYS_BIRTH .
We may use these feature importances as a method of dimensionality reduction in future work.

In [0]: def plot_feature_importances(df): 

    """ 

    Plot importances returned by a model. This can work with any measure of 

    feature importance provided that higher importance is better.  

     

    Args: 

        df (dataframe): feature importances. Must have the features in a colum

n 

        called `features` and the importances in a column called `importance 

         

    Returns: 

        shows a plot of the 15 most importance features 

         

        df (dataframe): feature importances sorted by importance (highest to l

owest)  

        with a column for normalized importance 

        """ 

     

    # Sort features according to importance 

    df = df.sort_values('importance', ascending = False).reset_index() 

     

    # Normalize the feature importances to add up to one 

    df['importance_normalized'] = df['importance'] / df['importance'].sum() 

 

    # Make a horizontal bar chart of feature importances 

    plt.figure(figsize = (10, 6)) 

    ax = plt.subplot() 

     

    # Need to reverse the index to plot most important on top 

    ax.barh(list(reversed(list(df.index[:15]))),  

            df['importance_normalized'].head(15),  

            align = 'center', edgecolor = 'k') 

     

    # Set the yticks and labels 

    ax.set_yticks(list(reversed(list(df.index[:15])))) 

    ax.set_yticklabels(df['feature'].head(15)) 

     

    # Plot labeling 

    plt.xlabel('Normalized Importance'); plt.title('Feature Importances') 

    plt.show() 

     

    return df 

In [0]: # Show the feature importances for the default features 

feature_importances_sorted = plot_feature_importances(feature_importances) 

As expected, the most important features are those dealing with EXT_SOURCE  and DAYS_BIRTH .
We see that there are only a handful of features with a significant importance to the model, which
suggests we may be able to drop many of the features without a decrease in performance (and we
may even see an increase in performance.) Feature importances are not the most sophisticated
method to interpret a model or perform dimensionality reduction, but they let us start to understand
what factors our model takes into account when it makes predictions.

In [0]: feature_importances_domain_sorted = plot_feature_importances(feature_importanc

es_domain) 

We see that all four of our hand-engineered features made it into the top 15 most important! This
should give us confidence that our domain knowledge was at least partially on track.

Conclusions
In this notebook, We first made sure to understand the data, our task, and the metric by which our
submissions will be judged. Then, we performed a fairly simple EDA to try and identify relationships,
trends, or anomalies that may help our modeling. Along the way, we performed necessary
preprocessing steps such as encoding categorical variables, imputing missing values, and scaling
features to a range. Then, we constructed new features out of the existing data to see if doing so
could help our model.

Once the data exploration, data preparation, and feature engineering was complete, we
implemented a baseline model upon which we hope to improve. Then we built a second slightly
more complicated model to beat our first score. We also carried out an experiment to determine the
effect of adding the engineering variables.

Machine learning competitions do differ slightly from typical data science problems in that we are
concerned only with achieving the best performance on a single metric and do not care about the
interpretation. However, by attempting to understand how our models make decisions, we can try to
improve them or examine the mistakes in order to correct the errors.

Running the notebook: now that we are at the end of the notebook, you can hit the blue Commit
& Run button to execute all the code at once. After the run is complete (this should take about 10
minutes), you can then access the files that were created by going to the versions tab and then the
output sub-tab. The submission files can be directly submitted to the competition from this tab or
they can be downloaded to a local machine and saved.

Just for Fun: Light Gradient Boosting Machine
Now (if you want, this part is entirely optional) we can step off the deep end and use a real machine
learning model: the gradient boosting machine using the LightGBM library! The Gradient Boosting
Machine is currently the leading model for learning on structured datasets (especially on Kaggle)
and we will probably need some form of this model to do well in the competition. Don't worry, even
if this code looks intimidating, it's just a series of small steps that build up to a complete model. I
added this code just to show what may be in store for this project, and because it gets us a slightly
better score on the leaderboard.

In [0]: from sklearn.model_selection import KFold 

from sklearn.metrics import roc_auc_score 

import lightgbm as lgb 

import gc 

 

def model(features, test_features, encoding = 'ohe', n_folds = 5): 

     

    """Train and test a light gradient boosting model using 

    cross validation.  

     

    Parameters 

    -------- 

        features (pd.DataFrame):  

            dataframe of training features to use  

            for training a model. Must include the TARGET column. 

        test_features (pd.DataFrame):  

            dataframe of testing features to use 

            for making predictions with the model.  

        encoding (str, default = 'ohe'):  

            method for encoding categorical variables. Either 'ohe' for one-ho

t encoding or 'le' for integer label encoding 

            n_folds (int, default = 5): number of folds to use for cross valid

ation 

         

    Return 

    -------- 

        submission (pd.DataFrame):  

            dataframe with `SK_ID_CURR` and `TARGET` probabilities 

            predicted by the model. 

        feature_importances (pd.DataFrame):  

            dataframe with the feature importances from the model. 

        valid_metrics (pd.DataFrame):  

            dataframe with training and validation metrics (ROC AUC) for each

 fold and overall. 

         

    """ 

     

    # Extract the ids 

    train_ids = features['SK_ID_CURR'] 

    test_ids = test_features['SK_ID_CURR'] 

     

    # Extract the labels for training 

    labels = features['TARGET'] 

     

    # Remove the ids and target 

    features = features.drop(columns = ['SK_ID_CURR', 'TARGET']) 

    test_features = test_features.drop(columns = ['SK_ID_CURR']) 

     

     

    # One Hot Encoding 

    if encoding == 'ohe': 

        features = pd.get_dummies(features) 

        test_features = pd.get_dummies(test_features) 

         

        # Align the dataframes by the columns 

        features, test_features = features.align(test_features, join = 'inner'

, axis = 1) 

         

        # No categorical indices to record 

        cat_indices = 'auto' 

     

    # Integer label encoding 

    elif encoding == 'le': 

         

        # Create a label encoder 

        label_encoder = LabelEncoder() 

         

        # List for storing categorical indices 

        cat_indices = [] 

         

        # Iterate through each column 

        for i, col in enumerate(features): 

            if features[col].dtype == 'object': 

                # Map the categorical features to integers 

                features[col] = label_encoder.fit_transform(np.array(features[

col].astype(str)).reshape((-1,))) 

                test_features[col] = label_encoder.transform(np.array(test_fea

tures[col].astype(str)).reshape((-1,))) 

 

                # Record the categorical indices 

                cat_indices.append(i) 

     

    # Catch error if label encoding scheme is not valid 

    else: 

        raise ValueError("Encoding must be either 'ohe' or 'le'") 

         

    print('Training Data Shape: ', features.shape) 

    print('Testing Data Shape: ', test_features.shape) 

     

    # Extract feature names 

    feature_names = list(features.columns) 

     

    # Convert to np arrays 

    features = np.array(features) 

    test_features = np.array(test_features) 

     

    # Create the kfold object 

    k_fold = KFold(n_splits = n_folds, shuffle = True, random_state = 50) 

     

    # Empty array for feature importances 

    feature_importance_values = np.zeros(len(feature_names)) 

     

    # Empty array for test predictions 

    test_predictions = np.zeros(test_features.shape[0]) 

     

    # Empty array for out of fold validation predictions 

    out_of_fold = np.zeros(features.shape[0]) 

     

    # Lists for recording validation and training scores 

    valid_scores = [] 

    train_scores = [] 

     

    # Iterate through each fold 

    for train_indices, valid_indices in k_fold.split(features): 

         

        # Training data for the fold 

        train_features, train_labels = features[train_indices], labels[train_i

ndices] 

        # Validation data for the fold 

        valid_features, valid_labels = features[valid_indices], labels[valid_i

ndices] 

         

        # Create the model 

        model = lgb.LGBMClassifier(n_estimators=10000, objective = 'binary',  

                                   class_weight = 'balanced', learning_rate = 

0.05,  

                                   reg_alpha = 0.1, reg_lambda = 0.1,  

                                   subsample = 0.8, n_jobs = -1, random_state 

= 50) 

         

        # Train the model 

        model.fit(train_features, train_labels, eval_metric = 'auc', 

                  eval_set = [(valid_features, valid_labels), (train_features, 

train_labels)], 

                  eval_names = ['valid', 'train'], categorical_feature = cat_i

ndices, 

                  early_stopping_rounds = 100, verbose = 200) 

         

        # Record the best iteration 

        best_iteration = model.best_iteration_ 

         

        # Record the feature importances 

        feature_importance_values += model.feature_importances_ / k_fold.n_spl

its 

         

        # Make predictions 

        test_predictions += model.predict_proba(test_features, num_iteration = 

best_iteration)[:, 1] / k_fold.n_splits 

         

        # Record the out of fold predictions 

        out_of_fold[valid_indices] = model.predict_proba(valid_features, num_i

teration = best_iteration)[:, 1] 

         

        # Record the best score 

        valid_score = model.best_score_['valid']['auc'] 

        train_score = model.best_score_['train']['auc'] 

         

        valid_scores.append(valid_score) 

        train_scores.append(train_score) 

         

        # Clean up memory 

        gc.enable() 

        del model, train_features, valid_features 

        gc.collect() 

         

    # Make the submission dataframe 

    submission = pd.DataFrame({'SK_ID_CURR': test_ids, 'TARGET': test_predicti

ons}) 

     

    # Make the feature importance dataframe 

    feature_importances = pd.DataFrame({'feature': feature_names, 'importance'

: feature_importance_values}) 

     

    # Overall validation score 

    valid_auc = roc_auc_score(labels, out_of_fold) 

     

    # Add the overall scores to the metrics 

    valid_scores.append(valid_auc) 

    train_scores.append(np.mean(train_scores)) 

     

    # Needed for creating dataframe of validation scores 

    fold_names = list(range(n_folds)) 

    fold_names.append('overall') 

     

    # Dataframe of validation scores 

    metrics = pd.DataFrame({'fold': fold_names, 

                            'train': train_scores, 

                            'valid': valid_scores})  

     

    return submission, feature_importances, metrics 

In [0]: submission, fi, metrics = model(app_train, app_test) 

print('Baseline metrics') 

print(metrics) 

In [0]: fi_sorted = plot_feature_importances(fi) 

In [0]: submission.to_csv('baseline_lgb.csv', index = False) 

This submission should score about 0.735 on the leaderboard.

In [0]: app_train_domain['TARGET'] = train_labels 

 

# Test the domain knolwedge features 

submission_domain, fi_domain, metrics_domain = model(app_train_domain, app_tes

t_domain) 

print('Baseline with domain knowledge features metrics') 

print(metrics_domain) 

No file chosenChoose Files

Upload widget is only available when the cell has been executed in the current browser session. Please
rerun this cell to enable.

Saving kaggle.json to kaggle.json 

User uploaded file "kaggle.json" with length 62 bytes 

sample_submission.csv.zip: Skipping, found more recently modified local copy 

(use --force to force download) 

application_test.csv.zip: Skipping, found more recently modified local copy 

(use --force to force download) 

application_train.csv.zip: Skipping, found more recently modified local copy 

(use --force to force download) 

bureau.csv.zip: Skipping, found more recently modified local copy (use --for

ce to force download) 

bureau_balance.csv.zip: Skipping, found more recently modified local copy (u

se --force to force download) 

previous_application.csv.zip: Skipping, found more recently modified local c

opy (use --force to force download) 

credit_card_balance.csv.zip: Skipping, found more recently modified local co

py (use --force to force download) 

POS_CASH_balance.csv.zip: Skipping, found more recently modified local copy 

(use --force to force download) 

installments_payments.csv.zip: Skipping, found more recently modified local 

copy (use --force to force download) 

HomeCredit_columns_description.csv: Skipping, found more recently modified l

ocal copy (use --force to force download) 

application_test.csv      HomeCredit_columns_description.csv 

application_test.csv.zip     installments_payments.csv.zip 

application_train.csv      POS_CASH_balance.csv.zip 

application_train.csv.zip    previous_application.csv.zip 

bureau_balance.csv.zip      sample_data 

bureau.csv.zip       sample_submission.csv.zip 

credit_card_balance.csv.zip 

Archive:  application_train.csv.zip 

replace application_train.csv? [y]es, [n]o, [A]ll, [N]one, [r]ename: n 

Archive:  application_test.csv.zip 

replace application_test.csv? [y]es, [n]o, [A]ll, [N]one, [r]ename: n 

Training data shape:  (307511, 122) 

Out[0]:

SK_ID_CURR TARGET NAME_CONTRACT_TYPE CODE_GENDER FLAG_OWN_CAR FLAG_OWN

0 100002 1 Cash loans M N

1 100003 0 Cash loans F N

2 100004 0 Revolving loans M Y

3 100006 0 Cash loans F N

4 100007 0 Cash loans M N

5 rows × 122 columns

Testing data shape:  (48744, 121) 

Out[0]:

SK_ID_CURR NAME_CONTRACT_TYPE CODE_GENDER FLAG_OWN_CAR FLAG_OWN_REALTY

0 100001 Cash loans F N Y

1 100005 Cash loans M N Y

2 100013 Cash loans M Y Y

3 100028 Cash loans F N Y

4 100038 Cash loans M Y N

5 rows × 121 columns

Out[0]: 0    282686 

1     24825 

Name: TARGET, dtype: int64

Out[0]: <matplotlib.axes._subplots.AxesSubplot at 0x7fc0ba5b6828>

Your selected dataframe has 122 columns. 

There are 67 columns that have missing values. 

Out[0]:

Missing Values % of Total Values

COMMONAREA_MEDI 214865 69.9

COMMONAREA_AVG 214865 69.9

COMMONAREA_MODE 214865 69.9

NONLIVINGAPARTMENTS_MEDI 213514 69.4

NONLIVINGAPARTMENTS_MODE 213514 69.4

Out[0]: float64    65 

int64      41 

object     16 

dtype: int64

Out[0]: NAME_CONTRACT_TYPE             2 

CODE_GENDER                    3 

FLAG_OWN_CAR                   2 

FLAG_OWN_REALTY                2 

NAME_TYPE_SUITE                7 

NAME_INCOME_TYPE               8 

NAME_EDUCATION_TYPE            5 

NAME_FAMILY_STATUS             6 

NAME_HOUSING_TYPE              6 

OCCUPATION_TYPE               18 

WEEKDAY_APPR_PROCESS_START     7 

ORGANIZATION_TYPE             58 

FONDKAPREMONT_MODE             4 

HOUSETYPE_MODE                 3 

WALLSMATERIAL_MODE             7 

EMERGENCYSTATE_MODE            2 

dtype: int64

Out[0]: ((307511, 122), (48744, 121))

3 columns were label encoded. 

Training Features shape:  (307511, 243) 

Testing Features shape:  (48744, 239) 

Training Features shape:  (307511, 240) 

Testing Features shape:  (48744, 239) 

Out[0]: count    307511.000000 

mean         43.936973 

std          11.956133 

min          20.517808 

25%          34.008219 

50%          43.150685 

75%          53.923288 

max          69.120548 

Name: DAYS_BIRTH, dtype: float64

Out[0]: count    307511.000000 

mean       -174.835742 

std         387.056895 

min       -1000.665753 

25%           0.791781 

50%           3.323288 

75%           7.561644 

max          49.073973 

Name: DAYS_EMPLOYED, dtype: float64

Out[0]: Text(0.5, 0, 'Days Employment')

The non-anomalies default on 8.66% of loans 

The anomalies default on 5.40% of loans 

There are 55374 anomalous days of employment 

Out[0]: Text(0.5, 0, 'Days Employment')

There are 9274 anomalies in the test data out of 48744 entries 

Most Positive Correlations: 

 OCCUPATION_TYPE_Laborers                             0.043019 

FLAG_DOCUMENT_3                                      0.044346 

REG_CITY_NOT_LIVE_CITY                               0.044395 

FLAG_EMP_PHONE                                       0.045982 

NAME_EDUCATION_TYPE_Secondary / secondary special    0.049824 

REG_CITY_NOT_WORK_CITY                               0.050994 

DAYS_ID_PUBLISH                                      0.051457 

CODE_GENDER_M                                        0.054713 

DAYS_LAST_PHONE_CHANGE                               0.055218 

NAME_INCOME_TYPE_Working                             0.057481 

REGION_RATING_CLIENT                                 0.058899 

REGION_RATING_CLIENT_W_CITY                          0.060893 

DAYS_EMPLOYED                                        0.074958 

DAYS_BIRTH                                           0.078239 

TARGET                                               1.000000 

Name: TARGET, dtype: float64 

 

Most Negative Correlations: 

 EXT_SOURCE_3                           -0.178919 

EXT_SOURCE_2                           -0.160472 

EXT_SOURCE_1                           -0.155317 

NAME_EDUCATION_TYPE_Higher education   -0.056593 

CODE_GENDER_F                          -0.054704 

NAME_INCOME_TYPE_Pensioner             -0.046209 

DAYS_EMPLOYED_ANOM                     -0.045987 

ORGANIZATION_TYPE_XNA                  -0.045987 

FLOORSMAX_AVG                          -0.044003 

FLOORSMAX_MEDI                         -0.043768 

FLOORSMAX_MODE                         -0.043226 

EMERGENCYSTATE_MODE_No                 -0.042201 

HOUSETYPE_MODE_block of flats          -0.040594 

AMT_GOODS_PRICE                        -0.039645 

REGION_POPULATION_RELATIVE             -0.037227 

Name: TARGET, dtype: float64 

Out[0]: -0.07823930830982694

Out[0]: (Text(0.5, 1.0, 'Age of Client'), 

 Text(0.5, 0, 'Age (years)'), 

 Text(0, 0.5, 'Count'))

Out[0]: (Text(0.5, 0, 'Age (years)'), 

 Text(0, 0.5, 'Density'), 

 Text(0.5, 1.0, 'Distribution of Ages'))

Out[0]:

TARGET DAYS_BIRTH YEARS_BIRTH YEARS_BINNED

0 1 9461 25.920548 (25.0, 30.0]

1 0 16765 45.931507 (45.0, 50.0]

2 0 19046 52.180822 (50.0, 55.0]

3 0 19005 52.068493 (50.0, 55.0]

4 0 19932 54.608219 (50.0, 55.0]

5 0 16941 46.413699 (45.0, 50.0]

6 0 13778 37.747945 (35.0, 40.0]

7 0 18850 51.643836 (50.0, 55.0]

8 0 20099 55.065753 (55.0, 60.0]

9 0 14469 39.641096 (35.0, 40.0]

Out[0]:

TARGET DAYS_BIRTH YEARS_BIRTH

YEARS_BINNED

(20.0, 25.0] 0.123036 8532.795625 23.377522

(25.0, 30.0] 0.111436 10155.219250 27.822518

(30.0, 35.0] 0.102814 11854.848377 32.479037

(35.0, 40.0] 0.089414 13707.908253 37.555913

(40.0, 45.0] 0.078491 15497.661233 42.459346

(45.0, 50.0] 0.074171 17323.900441 47.462741

(50.0, 55.0] 0.066968 19196.494791 52.593136

(55.0, 60.0] 0.055314 20984.262742 57.491131

(60.0, 65.0] 0.052737 22780.547460 62.412459

(65.0, 70.0] 0.037270 24292.614340 66.555108

Out[0]: Text(0.5, 1.0, 'Failure to Repay by Age Group')

Out[0]:

TARGET EXT_SOURCE_1 EXT_SOURCE_2 EXT_SOURCE_3 DAYS_BIRTH

TARGET 1.000000 -0.155317 -0.160472 -0.178919 -0.078239

EXT_SOURCE_1 -0.155317 1.000000 0.213982 0.186846 0.600610

EXT_SOURCE_2 -0.160472 0.213982 1.000000 0.109167 0.091996

EXT_SOURCE_3 -0.178919 0.186846 0.109167 1.000000 0.205478

DAYS_BIRTH -0.078239 0.600610 0.091996 0.205478 1.000000

Out[0]: Text(0.5, 1.0, 'Correlation Heatmap')

Out[0]: Text(0.5, 1.05, 'Ext Source and Age Features Pairs Plot')

Polynomial Features shape:  (307511, 35) 

Out[0]: ['1', 

 'EXT_SOURCE_1', 

 'EXT_SOURCE_2', 

 'EXT_SOURCE_3', 

 'DAYS_BIRTH', 

 'EXT_SOURCE_1^2', 

 'EXT_SOURCE_1 EXT_SOURCE_2', 

 'EXT_SOURCE_1 EXT_SOURCE_3', 

 'EXT_SOURCE_1 DAYS_BIRTH', 

 'EXT_SOURCE_2^2', 

 'EXT_SOURCE_2 EXT_SOURCE_3', 

 'EXT_SOURCE_2 DAYS_BIRTH', 

 'EXT_SOURCE_3^2', 

 'EXT_SOURCE_3 DAYS_BIRTH', 

 'DAYS_BIRTH^2']

EXT_SOURCE_2 EXT_SOURCE_3                -0.193939 

EXT_SOURCE_1 EXT_SOURCE_2 EXT_SOURCE_3   -0.189605 

EXT_SOURCE_2 EXT_SOURCE_3 DAYS_BIRTH     -0.181283 

EXT_SOURCE_2^2 EXT_SOURCE_3              -0.176428 

EXT_SOURCE_2 EXT_SOURCE_3^2              -0.172282 

EXT_SOURCE_1 EXT_SOURCE_2                -0.166625 

EXT_SOURCE_1 EXT_SOURCE_3                -0.164065 

EXT_SOURCE_2                             -0.160295 

EXT_SOURCE_2 DAYS_BIRTH                  -0.156873 

EXT_SOURCE_1 EXT_SOURCE_2^2              -0.156867 

Name: TARGET, dtype: float64 

DAYS_BIRTH     -0.078239 

DAYS_BIRTH^2   -0.076672 

DAYS_BIRTH^3   -0.074273 

TARGET          1.000000 

1                    NaN 

Name: TARGET, dtype: float64 

Training data with polynomial features shape:  (307511, 275) 

Testing data with polynomial features shape:   (48744, 275) 

Training data shape:  (307511, 240) 

Testing data shape:  (48744, 240) 

Out[0]: LogisticRegression(C=0.0001, class_weight=None, dual=False, 

          fit_intercept=True, intercept_scaling=1, max_iter=100, 

          multi_class='warn', n_jobs=None, penalty='l2', random_state=None, 

          solver='warn', tol=0.0001, verbose=0, warm_start=False)

Out[0]:

SK_ID_CURR TARGET

0 100001 0.087750

1 100005 0.163957

2 100013 0.110238

3 100028 0.076575

4 100038 0.154924

[Parallel(n_jobs=-1)]: Using backend ThreadingBackend with 2 concurrent work

ers. 

[Parallel(n_jobs=-1)]: Done  46 tasks      | elapsed:  1.2min 

[Parallel(n_jobs=-1)]: Done 100 out of 100 | elapsed:  2.5min finished 

[Parallel(n_jobs=2)]: Using backend ThreadingBackend with 2 concurrent worke

rs. 

[Parallel(n_jobs=2)]: Done  46 tasks      | elapsed:    0.7s 

[Parallel(n_jobs=2)]: Done 100 out of 100 | elapsed:    1.5s finished 

[Parallel(n_jobs=-1)]: Using backend ThreadingBackend with 2 concurrent work

ers. 

[Parallel(n_jobs=-1)]: Done  46 tasks      | elapsed:  1.8min 

[Parallel(n_jobs=-1)]: Done 100 out of 100 | elapsed:  3.8min finished 

[Parallel(n_jobs=2)]: Using backend ThreadingBackend with 2 concurrent worke

rs. 

[Parallel(n_jobs=2)]: Done  46 tasks      | elapsed:    0.4s 

[Parallel(n_jobs=2)]: Done 100 out of 100 | elapsed:    0.9s finished 

[Parallel(n_jobs=-1)]: Using backend ThreadingBackend with 2 concurrent work

ers. 

[Parallel(n_jobs=-1)]: Done  46 tasks      | elapsed:  1.2min 

[Parallel(n_jobs=-1)]: Done 100 out of 100 | elapsed:  2.6min finished 

[Parallel(n_jobs=2)]: Using backend ThreadingBackend with 2 concurrent worke

rs. 

[Parallel(n_jobs=2)]: Done  46 tasks      | elapsed:    0.7s 

[Parallel(n_jobs=2)]: Done 100 out of 100 | elapsed:    1.5s finished 

Training Data Shape:  (307511, 239) 

Testing Data Shape:  (48744, 239) 

Training until validation scores don't improve for 100 rounds. 

[200] train's auc: 0.79887 train's binary_logloss: 0.547648 vali

d's auc: 0.754949 valid's binary_logloss: 0.563125 

Early stopping, best iteration is: 

[208] train's auc: 0.80025 train's binary_logloss: 0.546264 vali

d's auc: 0.755109 valid's binary_logloss: 0.562276 

Training until validation scores don't improve for 100 rounds. 

[200] train's auc: 0.798518 train's binary_logloss: 0.548144 vali

d's auc: 0.758539 valid's binary_logloss: 0.563479 

Early stopping, best iteration is: 

[217] train's auc: 0.801374 train's binary_logloss: 0.545314 vali

d's auc: 0.758619 valid's binary_logloss: 0.561732 

Training until validation scores don't improve for 100 rounds. 

[200] train's auc: 0.79774 train's binary_logloss: 0.54923 valid's auc: 

0.762652 valid's binary_logloss: 0.564246 

[400] train's auc: 0.827288 train's binary_logloss: 0.520152 vali

d's auc: 0.762202 valid's binary_logloss: 0.546576 

Early stopping, best iteration is: 

[320] train's auc: 0.81638 train's binary_logloss: 0.531111 vali

d's auc: 0.763103 valid's binary_logloss: 0.553039 

Training until validation scores don't improve for 100 rounds. 

[200] train's auc: 0.799107 train's binary_logloss: 0.547723 vali

d's auc: 0.757496 valid's binary_logloss: 0.562014 

Early stopping, best iteration is: 

[183] train's auc: 0.796125 train's binary_logloss: 0.550639 vali

d's auc: 0.75759 valid's binary_logloss: 0.563795 

Training until validation scores don't improve for 100 rounds. 

[200] train's auc: 0.798268 train's binary_logloss: 0.548197 vali

d's auc: 0.758099 valid's binary_logloss: 0.564499 

Early stopping, best iteration is: 

[227] train's auc: 0.802746 train's binary_logloss: 0.543868 vali

d's auc: 0.758251 valid's binary_logloss: 0.561904 

Baseline metrics 

      fold     train     valid 

0        0  0.800250  0.755109 

1        1  0.801374  0.758619 

2        2  0.816380  0.763103 

3        3  0.796125  0.757590 

4        4  0.802746  0.758251 

5  overall  0.803375  0.758537 

Training Data Shape:  (307511, 243) 

Testing Data Shape:  (48744, 243) 

Training until validation scores don't improve for 100 rounds. 

[200] train's auc: 0.804531 train's binary_logloss: 0.541661 vali

d's auc: 0.762577 valid's binary_logloss: 0.557281 

Early stopping, best iteration is: 

[237] train's auc: 0.810671 train's binary_logloss: 0.535426 vali

d's auc: 0.762858 valid's binary_logloss: 0.553438 

Training until validation scores don't improve for 100 rounds. 

[200] train's auc: 0.804304 train's binary_logloss: 0.542018 vali

d's auc: 0.765594 valid's binary_logloss: 0.55808 

Early stopping, best iteration is: 

[227] train's auc: 0.808665 train's binary_logloss: 0.537574 vali

d's auc: 0.765861 valid's binary_logloss: 0.555268 

Training until validation scores don't improve for 100 rounds. 

[200] train's auc: 0.803753 train's binary_logloss: 0.542936 vali
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