
Earthquake Prediction

RIHAD VARIAWA

09-02-2019

What is this competition all about?
Given seismic signals we are asked to predict the time until the onset of laboratory earthquakes.
The training data is a single sequence of signal and seems to come from one experiment alone.
In contrast the test data consists of several different sequences, called segments, that may correspond to different
experiments. The regular pattern we might find in the train set does not match those of the test segments.
For each test data segment with its corresponding seg_id we are asked to predict it's single time until the lab
earthquake takes place.

What is an earthquake in the lab?
Presently, I don't know how an earthquake in the laboratory works. So I've googled around and found this video that
shows how such a lab looks like. If you like, feel free to take a look at it. I'm still on my journey to understand the problem.

In [0]: from IPython.display import YouTubeVideo

YouTubeVideo('m_dBwwDJ4uo')

In the end we can see that the probes that are used are put under some kind of normal pressure but there is a shear
stress working on it as well. Then, after some time, the probe splits. If you take a look at the additional material given,
you can see that we have:

3 kind of plates

2 plates left and right that are under normal pressure: Forces are acting with 90 degree on the plate, pushing the two
plates together.
In the middle we find a third plate which is separated by some granular material. This plate moves downwards with
constant velocity.

I'm not sure if I understand this right, but it seems that this granular material is the "rock" that can split and load again to
produce this kind of lab earthquakes in repetitive cycles. Even though the train set contains continuous data it contains
several such splits (earthquakes).

Loading Packages

In [0]: # access kaggle datasets

!pip install kaggle

math operations

!pip install numpy==1.15.0

machine learning

!pip install catboost

In [0]: # data preprocessing

import pandas as pd

math operations

import numpy as np

machine learning

from catboost import CatBoostRegressor, Pool

data scaling

from sklearn.preprocessing import StandardScaler

hyperparameter optimization

from sklearn.model_selection import GridSearchCV

support vector machine model

from sklearn.svm import NuSVR, SVR

kernel ridge model

from sklearn.kernel_ridge import KernelRidge

data visualization

import matplotlib.pyplot as plt

Import Dataset from Kaggle

In [0]: # Colab's file access feature

from google.colab import files

retrieve uploaded file

uploaded = files.upload()

print results

for fn in uploaded.keys():

 print('User uploaded file "{name}" with length {length} bytes'.format(

 name=fn, length=len(uploaded[fn])))

then move kaggle.json into the folder where the API expects to find it.

!mkdir -p ~/.kaggle/ && mv kaggle.json ~/.kaggle/ && chmod 600 ~/.kaggle/kaggle.json

In [0]: # list competitions

!kaggle competitions list

In [0]: # download earthquake dataset

!kaggle competitions download -c LANL-Earthquake-Prediction

In [0]: # unzip training data for usage

!ls

!unzip train.csv.zip

!ls

Exploratory Data Analysis

Let's get familiar with the data!

Training data

The total size of the train data is almost 9 GB and we don't want to wait too long just for a first impression, let's load only
some rows:

In [0]: # extract training data into a dataframe for further manipulation

train = pd.read_csv('train.csv', nrows=6000000, dtype={'acoustic_data': np.int16, 'time_to_failu

re': np.float64})

print first 10 entries

train.head(10)

We see two columns: acoustic_data and time_to_failure. The former is the seismic singal and the latter corresponds to
the the time (in seconds) until the next laboratory earthquake takes place.

In [0]: fig, ax = plt.subplots(2,1, figsize=(12,8))

ax[0].plot(train.index.values, train.acoustic_data.values, c="darkred")

ax[0].set_title("Time To Failure of 6mln rows")

ax[0].set_xlabel("Index")

ax[0].set_ylabel("Quaketime in ms");

ax[1].plot(train.index.values, train.time_to_failure.values, c="mediumseagreen")

ax[1].set_title("Acoustic Data of 6mln rows")

ax[1].set_xlabel("Index")

ax[1].set_ylabel("Acoustic Signal");

Observations:

We can see only one time in 6mln rows when quaketime goes to 0. This is a timepoint where an earthquake in the lab
occurs.
There are many small oscillations until a heavy peak of the signal occurs. Then it takes some time with smaller
oscillations and the earthquake occurs.

In [0]: # visualize 1% of samples data, first 100 datapoints

train_ad_sample_df = train['acoustic_data'].values[::100]

train_ttf_sample_df = train['time_to_failure'].values[::100]

function for plotting based on both features

def plot_acc_ttf_data(train_ad_sample_df, train_ttf_sample_df, title="Acoustic data and time to

failure: 1% sampled data"):

 fig, ax1 = plt.subplots(figsize=(12, 8))

 plt.title(title)

 plt.plot(train_ad_sample_df, color='darkred')

 ax1.set_ylabel('acoustic data', color='darkred')

 plt.legend(['acoustic data'], loc=(0.01, 0.95))

 ax2 = ax1.twinx()

 plt.plot(train_ttf_sample_df, color='mediumseagreen')

 ax2.set_ylabel('time to failure', color='mediumseagreen')

 plt.legend(['time to failure'], loc=(0.01, 0.9))

 plt.grid(True)

plot_acc_ttf_data(train_ad_sample_df, train_ttf_sample_df)

del train_ad_sample_df

del train_ttf_sample_df

Feature Engineering

In [0]: ## Feature Engineering and signifiance of these statistical features

let's create a function to generate some statistical features based on the training data

def gen_features(X):

 strain = []

 strain.append(X.mean())

 strain.append(X.std())

 strain.append(X.min())

 strain.append(X.max())

 strain.append(X.kurtosis())

 strain.append(X.skew())

 strain.append(np.quantile(X,0.01))

 strain.append(np.quantile(X,0.05))

 strain.append(np.quantile(X,0.95))

 strain.append(np.quantile(X,0.99))

 strain.append(np.abs(X).max())

 strain.append(np.abs(X).mean())

 strain.append(np.abs(X).std())

 return pd.Series(strain)

In [0]: train = pd.read_csv('train.csv', iterator=True, chunksize=150_000, dtype={'acoustic_data': np.in

t16, 'time_to_failure': np.float64})

X_train = pd.DataFrame()

y_train = pd.Series()

for df in train:

 ch = gen_features(df['acoustic_data'])

 X_train = X_train.append(ch, ignore_index=True)

 y_train = y_train.append(pd.Series(df['time_to_failure'].values[-1]))

In [0]: X_train.describe()

Implement Catboost Model

In [0]: # model #1 - Catboost

train_pool = Pool(X_train, y_train)

m = CatBoostRegressor(iterations=10000, loss_function='MAE', boosting_type='Ordered')

m.fit(X_train, y_train, silent=True)

m.best_score_

Not a great score, given the leaderboard's top 5 are in the mid
1.3 to 1.4

Implement Support Vector Machine + Radial Basis Function Kernel

In [0]: # model #2 - Support Vector Machine w/ RBF + Grid Search

from sklearn.preprocessing import StandardScaler

from sklearn.model_selection import GridSearchCV

from sklearn.svm import NuSVR, SVR

scaler = StandardScaler()

scaler.fit(X_train)

X_train_scaled = scaler.transform(X_train)

parameters = [{'gamma': [0.001, 0.005, 0.01, 0.02, 0.05, 0.1],

 'C': [0.1, 0.2, 0.25, 0.5, 1, 1.5, 2]}]

 #'nu': [0.75, 0.8, 0.85, 0.9, 0.95, 0.97]}]

reg1 = GridSearchCV(SVR(kernel='rbf', tol=0.01), parameters, cv=5, scoring='neg_mean_absolute_er

ror')

reg1.fit(X_train_scaled, y_train.values.flatten())

y_pred1 = reg1.predict(X_train_scaled)

print("Best CV score: {:.4f}".format(reg1.best_score_))

print(reg1.best_params_)

Out[0]:

Earthquake in a labEarthquake in a labEarthquake in a lab

Requirement already satisfied: kaggle in /usr/local/lib/python3.6/dist-packages (1.5.2)

Requirement already satisfied: urllib3<1.23.0,>=1.15 in /usr/local/lib/python3.6/dist-packages

(from kaggle) (1.22)

Requirement already satisfied: six>=1.10 in /usr/local/lib/python3.6/dist-packages (from kaggl

e) (1.11.0)

Requirement already satisfied: certifi in /usr/local/lib/python3.6/dist-packages (from kaggle)

(2018.11.29)

Requirement already satisfied: python-dateutil in /usr/local/lib/python3.6/dist-packages (from

kaggle) (2.5.3)

Requirement already satisfied: requests in /usr/local/lib/python3.6/dist-packages (from kaggl

e) (2.18.4)

Requirement already satisfied: tqdm in /usr/local/lib/python3.6/dist-packages (from kaggle)

(4.28.1)

Requirement already satisfied: python-slugify in /usr/local/lib/python3.6/dist-packages (from

kaggle) (2.0.1)

Requirement already satisfied: chardet<3.1.0,>=3.0.2 in /usr/local/lib/python3.6/dist-packages

(from requests->kaggle) (3.0.4)

Requirement already satisfied: idna<2.7,>=2.5 in /usr/local/lib/python3.6/dist-packages (from

requests->kaggle) (2.6)

Requirement already satisfied: Unidecode>=0.04.16 in /usr/local/lib/python3.6/dist-packages (f

rom python-slugify->kaggle) (1.0.23)

Requirement already satisfied: numpy==1.15.0 in /usr/local/lib/python3.6/dist-packages (1.15.

0)

Requirement already satisfied: catboost in /usr/local/lib/python3.6/dist-packages (0.12.2)

Requirement already satisfied: numpy>=1.11.1 in /usr/local/lib/python3.6/dist-packages (from c

atboost) (1.15.0)

Requirement already satisfied: six in /usr/local/lib/python3.6/dist-packages (from catboost)

(1.11.0)

Requirement already satisfied: enum34 in /usr/local/lib/python3.6/dist-packages (from catboos

t) (1.1.6)

Requirement already satisfied: pandas>=0.19.1 in /usr/local/lib/python3.6/dist-packages (from

catboost) (0.22.0)

Requirement already satisfied: pytz>=2011k in /usr/local/lib/python3.6/dist-packages (from pan

das>=0.19.1->catboost) (2018.9)

Requirement already satisfied: python-dateutil>=2 in /usr/local/lib/python3.6/dist-packages (f

rom pandas>=0.19.1->catboost) (2.5.3)

No file chosenChoose Files

Upload widget is only available when the cell has been executed in the current browser session. Please rerun this cell to enable.

Saving kaggle.json to kaggle.json

User uploaded file "kaggle.json" with length 62 bytes

ref deadline category reward

teamCount userHasEntered

--- ------------------- --------------- ---------

--------- --------------

digit-recognizer 2030-01-01 00:00:00 Getting Started Knowledge

2617 False

titanic 2030-01-01 00:00:00 Getting Started Knowledge

9973 True

house-prices-advanced-regression-techniques 2030-01-01 00:00:00 Getting Started Knowledge

4136 True

imagenet-object-localization-challenge 2029-12-31 07:00:00 Research Knowledge

33 False

competitive-data-science-predict-future-sales 2019-12-31 23:59:00 Playground Kudos

2293 True

two-sigma-financial-news 2019-07-15 23:59:00 Featured $100,000

2897 False

LANL-Earthquake-Prediction 2019-06-03 23:59:00 Research $50,000

1012 True

tmdb-box-office-prediction 2019-05-30 23:59:00 Playground Knowledge

56 False

dont-overfit-ii 2019-05-07 23:59:00 Playground Swag

183 False

gendered-pronoun-resolution 2019-04-22 23:59:00 Research $25,000

115 False

histopathologic-cancer-detection 2019-03-30 23:59:00 Playground Knowledge

571 False

petfinder-adoption-prediction 2019-03-28 23:59:00 Featured $25,000

1024 False

vsb-power-line-fault-detection 2019-03-21 23:59:00 Featured $25,000

830 True

microsoft-malware-prediction 2019-03-13 23:59:00 Research $25,000

1558 False

humpback-whale-identification 2019-02-28 23:59:00 Featured $25,000

1777 False

elo-merchant-category-recommendation 2019-02-26 23:59:00 Featured $50,000

3612 False

quora-insincere-questions-classification 2019-02-26 23:59:00 Featured $25,000

4037 False

ga-customer-revenue-prediction 2019-02-15 23:59:00 Featured $45,000

1104 False

reducing-commercial-aviation-fatalities 2019-02-12 23:59:00 Playground Swag

160 True

pubg-finish-placement-prediction 2019-01-30 23:59:00 Playground Swag

1534 False

sample_submission.csv: Skipping, found more recently modified local copy (use --force to force

download)

test.zip: Skipping, found more recently modified local copy (use --force to force download)

train.csv.zip: Skipping, found more recently modified local copy (use --force to force downloa

d)

catboost_info sample_submission.csv train.csv

sample_data test.zip train.csv.zip

Archive: train.csv.zip

replace train.csv? [y]es, [n]o, [A]ll, [N]one, [r]ename: y

 inflating: train.csv

catboost_info sample_submission.csv train.csv

sample_data test.zip train.csv.zip

Out[0]:

acoustic_data time_to_failure

0 12 1.4691

1 6 1.4691

2 8 1.4691

3 5 1.4691

4 8 1.4691

5 8 1.4691

6 9 1.4691

7 7 1.4691

8 -5 1.4691

9 3 1.4691

Out[0]:

0 1 2 3 4 5 6 7

count 4195.000000 4195.000000 4195.000000 4195.000000 4195.000000 4195.000000 4195.000000 4195.000000 4195

mean 4.519475 6.547788 -149.190942 163.522288 68.297997 0.125830 -11.224603 -2.184779 11

std 0.256049 8.503939 265.087984 272.930331 70.532565 0.477901 14.106852 2.346558 2

min 3.596313 2.802720 -5515.000000 23.000000 0.648602 -4.091826 -336.000000 -39.000000 9

25% 4.349497 4.478637 -154.000000 92.000000 28.090227 -0.040779 -14.000000 -3.000000 10

50% 4.522147 5.618798 -111.000000 123.000000 45.816625 0.085620 -10.000000 -2.000000 11

75% 4.693350 6.880904 -79.000000 170.000000 78.664202 0.253930 -6.000000 -1.000000 12

max 5.391993 153.703569 -15.000000 5444.000000 631.158927 4.219429 -2.000000 0.000000 50

Out[0]: {'learn': {'MAE': 1.7804224713035586}}

Best CV score: -2.1722

{'C': 2, 'gamma': 0.02}

https://www.youtube.com/watch?v=m_dBwwDJ4uo
https://www.youtube.com/channel/UCjGqxn7_-dqXmS6MAITkmTw

