```
RIHAD VARIAWA
         14-11-2018
         This project is about predicting the price of bitcoin using
         time series forecasting
         Time series forecasting is quite different from other machine learning models because -
          1. It is time dependent. So, the basic assumption of a linear regression model that the
             observations are independent doesn't hold in this case.
          2. Along with an increasing or decreasing trend, most time series have some form of seasonality
             trends, i.e. variations specific to a particular time frame.
         Therefore simple ML models cannot be used and hence time series forecasting is a different area
         of research. This time series model ARIMA (Autoregressive Integrated Moving Average model) is
         used for forecasting the price of bitcoin.**
         I've used the time series model ARIMA and trained a neural network model RNN for predicting the
         bitcoin prices for future based on previous values and trends. Using ARIMA model which was
         trained on around 90 data points, an average accuracy of 80-85 % was achieved and using the
         RNN model an accuracy of almost 95% was achieved. This project was mainly built as Bitcoin is
         longest running and most well known cryptocurrency and is said to have a great future. Through
         this project what I wanted to see is if I could guickly train a deep learning model or use the standard
         time series models to predict Bitcoin prices and its future trends.
         Machine Learning:
         The model built gives prediction for bitcoin prices on any date given in the standard Unix format.
         These predictions could be used as the foundation of a bitcoin trading strategy. The people that
         bought the stocks when they were at high prices, lost most of their money. This is why it is
         important not to invest more money than you can afford to lose. Like stock market analysis this too
         can be used by investors to judge the best time to make investments in order to get best results.
         Even though there are multiple other factors which can affect the bitcoin price; like the supply and
         demand, other cryptocurrencies and many others like this can be used as a basic model and the
         rest factors can be manually studied as most of these factors are unpredictable. It can be used to
         get a fair idea of the prices and where the investments can be made. Bitcoin is still young and many
         sources says its here to stay.
In [0]: import numpy as np
         import pandas as pd
         import seaborn as sns
         import matplotlib.pyplot as plt
         import matplotlib as mpl
         from scipy import stats
         import statsmodels.api as sm
         import warnings
         from itertools import product
         from datetime import datetime
         warnings.filterwarnings('ignore')
         plt.style.use('seaborn-poster')
         /usr/local/lib/python3.6/dist-packages/statsmodels/compat/pandas.py:56: Futu
         reWarning: The pandas.core.datetools module is deprecated and will be remove
         d in a future version. Please use the pandas.tseries module instead.
           from pandas.core import datetools
         Making predictions with a ML techniques ARMA, Recurrent Neural Network (RNN) with prediction
         and time series analysis is our main objective.
         An ARIMA model is a class of statistical models for analyzing and forecasting time series data.
         It explicitly caters to a suite of standard structures in time series data, and as such provides a
         simple yet powerful method for making skillful time series forecasts.
In [0]: from google.colab import files
         files.upload()
          Choose Files No file chosen
         Upload widget is only available when the cell has been executed in the current browser session. Please
         rerun this cell to enable.
         Saving bitstampUSD_1-min_data_2012-01-01_to_2018-11-11.csv to bitstampUSD_1-
         min_data_2012-01-01_to_2018-11-11.csv
In [0]: | df=pd.read_csv('bitstampUSD_1-min_data_2012-01-01_to_2018-11-11.csv')
In [0]: df.head()
Out[0]:
                                                  Close Volume_(BTC) Volume_(Currency) Weighted_I
                       Open
                                 High
                                          Low
          Timestamp
          2011-12-31 4.465000 4.482500 4.465000 4.482500
                                                           23.829470
                                                                           106.330084
                                                                                           4.47
          2012-01-01 4.806667 4.806667 4.806667
                                                            7.200667
                                                                            35.259720
                                                                                           4.80
          2012-01-02 5.000000 5.000000 5.000000
                                                                                           5.00
                                                           19.048000
                                                                            95.240000
          2012-01-03 5.252500 5.252500 5.252500 5.252500
                                                           11.004660
                                                                            58.100651
                                                                                           5.25
          2012-01-04 5.200000 5.223333 5.200000 5.223333
                                                                                           5.20
                                                           11.914807
                                                                            63.119577
In [0]: df.dtypes
Out[0]: Timestamp
                                 int64
         Open
                                float64
         High
                                float64
         Low
                                float64
         Close float64 Volume_(BTC) float64
         Volume_(Currency) float64
         Weighted_Price
                               float64
         dtype: object
In [0]: df.shape
Out[0]: (2507, 7)
         Feature Extraction
In [0]: # Unix-time to
         df.Timestamp = pd.to_datetime(df.Timestamp, unit='s')
         # Resampling to daily frequency
         df.index = df.Timestamp
         df = df.resample('D').mean()
         # Resampling to monthly frequency
         df month = df.resample('M').mean()
         # Resampling to annual frequency
         df_year = df.resample('A-DEC').mean()
         # Resampling to quarterly frequency
         df Q = df.resample('Q-DEC').mean()
In [0]: df.head()
Out[0]:
                       Open
                                 High
                                          Low
                                                  Close Volume_(BTC) Volume_(Currency) Weighted_I
          Timestamp
          2011-12-31 4.465000 4.482500 4.465000 4.482500
                                                           23.829470
                                                                           106.330084
                                                                                           4.47
                                                                            35.259720
          2012-01-01 4.806667 4.806667 4.806667
                                                            7.200667
                                                                                           4.80
                                                           19.048000
          2012-01-02 5.000000 5.000000 5.000000 5.000000
                                                                            95.240000
                                                                                           5.00
          2012-01-03 5.252500 5.252500 5.252500 5.252500
                                                                                           5.25
                                                           11.004660
                                                                            58.100651
          2012-01-04 5.200000 5.223333 5.200000 5.223333
                                                           11.914807
                                                                            63.119577
                                                                                           5.20
In [0]: df.tail(5)
Out[0]:
                                                             Close Volume_(BTC) Volume_(Currenc)
                          Open
                                       High
                                                   Low
          Timestamp
          2018-11-06 6413.198590 6414.012555 6412.502904 6413.364822
                                                                        3.237555
                                                                                     20786.91272
          2018-11-07 6506.845810 6507.861305 6505.976738 6506.953638
                                                                        3.684440
                                                                                     23981.56336
          2018-11-08 6448.508802 6449.444281 6447.496121 6448.523555
                                                                        3.065667
                                                                                     19760.81503
          2018-11-09 6365.194847 6366.161427 6364.184180 6365.227867
                                                                                     16059.80429
                                                                        2.524023
          2018-11-10 6354.595866 6355.569189 6353.543136 6354.722105
                                                                        1.287738
                                                                                      8180.18543
In [0]: # PLOTS
         fig = plt.figure(figsize=[15, 7])
         plt.suptitle('Bitcoin Exchanges, Mean USD', fontsize=22)
         plt.subplot(221)
         plt.plot(df.Weighted_Price, '-', label='By Days')
         plt.legend()
         plt.subplot(222)
         plt.plot(df month.Weighted Price, '-', label='By Months')
         plt.legend()
         plt.subplot(223)
         plt.plot(df_Q.Weighted_Price, '-', label='By Quarters')
         plt.legend()
         plt.subplot(224)
         plt.plot(df year.Weighted Price, '-', label='By Years')
         plt.legend()
         # plt.tight layout()
         plt.show()
                                       Bitcoin Exchanges, Mean USD
          20000
                                                    15000

    By Days

                                                               By Months
          15000
                                                    10000
          10000
                                                     5000
          5000
             0
               2012 2013 2014 2015 2016 2017 2018 2019
                                                         2012 2013 2014 2015 2016 2017 2018 2019
                                                     8000
          10000

    By Quarters

                                                             By Years
                                                     6000
          7500
                                                     2000
           2500
             0
               2012 2013 2014 2015 2016 2017 2018 2019
                                                         2012 2013 2014 2015 2016 2017 2018 2019
         The timestamp in the data was converted to standard UNIX timestamps and for ARIMA the
         data was grouped by months by taking the mean values and for RNN the data was grouped
         by the days again taking mean value for each day.
         Splitting data into train and test set
In [0]: split = 80
         df train = df month[:split]
         df_test = df_month[split:len(df_month)]
In [0]:
         # Stationarity check and STL-decomposition of the series
         plt.figure(figsize=[15,7])
         \verb|sm.tsa.seasonal_decompose(df_train.Weighted_Price).plot()|\\
         print("Dickey-Fuller test: p=%f" % sm.tsa.stattools.adfuller(df_train.Weighted
         plt.show()
         Dickey-Fuller test: p=0.968518
         <matplotlib.figure.Figure at 0x7f37c84fe748>
         Observed
10000
               0
          Trend 2000
               0
          Seasonal
            5000
          Residual
               0
                    2012
                              2013
                                                                        2017
                                         2014
                                                   2015
                                                              2016
                                                                                   2018
                                                   Timestamp
In [0]: # Box-Cox Transformations
         df_train['Weighted_Price_box'], lmbda = stats.boxcox(df_train.Weighted_Price)
         print("Dickey-Fuller test: p=%f" % sm.tsa.stattools.adfuller(df_train.Weighted
         Price) [1])
         Dickey-Fuller test: p=0.968518
In [0]: # Seasonal differentiation
         df_train['prices_box_diff'] = df_train.Weighted_Price_box - df_train.Weighted_
         Price_box.shift(12)
         print("Dickey-Fuller test: p=%f" % sm.tsa.stattools.adfuller(df_train.prices_b
         ox_diff[12:])[1])
         Dickey-Fuller test: p=0.022912
In [0]: # As the p-value is more than the threshold i.e 5% we conclude : The series ar
         e not stationary.
         # Regular differentiation
         df_train['prices_box_diff2'] = df_train.prices_box_diff - df_train.prices_box_
         diff.shift(1)
         plt.figure(figsize=(15,7))
         # STL-decomposition
         sm.tsa.seasonal_decompose(df_train.prices_box_diff2[13:]).plot()
         print("Dickey-Fuller test: p=%f" % sm.tsa.stattools.adfuller(df train.prices b
         ox_diff2[13:])[1])
         plt.show()
         Dickey-Fuller test: p=0.003956
         <matplotlib.figure.Figure at 0x7f37c83c55f8>
           Observed
             -2
          Trend
            0.0
            -0.5
            0.2
          Seasonal
            0.0
              2
           Residual
o
                 2013
                              2014
                                           2015
                                                        2016
                                                                     2017
                                                                                  2018
                                                  Timestamp
In [0]: from pandas import Series
         from matplotlib import pyplot
         from statsmodels.graphics.tsaplots import plot acf
         plot acf(df train.prices box diff2[13:].values.squeeze())
         pyplot.show()
                                               Autocorrelation
           1.0
           0.8
           0.6
           0.4
           0.2
           0.0
          -0.2
          -0.4
                  0
                            10
                                       20
                                                                       50
                                                  30
In [0]: from pandas import Series
         from matplotlib import pyplot
         from statsmodels.graphics.tsaplots import plot_pacf
         plot_pacf(df_train.prices_box_diff2[13:].values.squeeze(), lags=50)
         pyplot.show()
                                           Partial Autocorrelation
           1.0
           0.8
           0.6
           0.4
           0.2
           0.0
          -0.2
                  0
                               10
                                              20
                                                            30
                                                                                         50
In [0]: # Initial approximation of parameters
         Qs = range(0, 2)
         qs = range(0, 3)
         Ps = range(0, 3)
         ps = range(0, 3)
         D=1
         d=1
         parameters = product(ps, qs, Ps, Qs)
         parameters_list = list(parameters)
         len(parameters_list)
         # Model Selection
         results = []
         best aic = float("inf")
         warnings.filterwarnings('ignore')
         for param in parameters list:
             try:
                  model=sm.tsa.statespace.SARIMAX(df_train.Weighted_Price_box, order=(pa
         ram[0], d, param[1]),
                                                      seasonal_order=(param[2], D, param[3],
         12)).fit(disp=-1)
             except ValueError:
                  print('wrong parameters:', param)
                  continue
             aic = model.aic
             if aic < best_aic:</pre>
                  best_model = model
                  best_aic = aic
                  best_param = param
              results.append([param, model.aic])
         wrong parameters: (0, 0, 0, 0)
         wrong parameters: (2, 1, 0, 0)
         wrong parameters: (2, 1, 0, 1)
         wrong parameters: (2, 1, 1, 0)
         wrong parameters: (2, 1, 1, 1)
         wrong parameters: (2, 1, 2, 0)
         wrong parameters: (2, 1, 2, 1)
In [0]: # Best Models
         result table = pd.DataFrame(results)
         result table.columns = ['parameters', 'aic']
         print(result_table.sort_values(by = 'aic', ascending=True).head())
               parameters
                                   aic
         18 (1, 0, 0, 1) 85.627332
         20 (1, 0, 1, 1) 85.913294
         12 (0, 2, 0, 1) 86.860969
         6 (0, 1, 0, 1) 87.338825
         36 (2, 0, 0, 1) 87.541997
In [0]: # STL-decomposition
         from pandas import Series
         from matplotlib import pyplot
         from statsmodels.graphics.tsaplots import plot_acf
         plt.figure(figsize=(15,7))
         plt.subplot(211)
         best_model.resid[13:].plot()
         ,plt.ylabel(u'Residuals')
         plot_acf(best_model.resid[13:].values.squeeze())
         print("Dickey-Fuller test:: p=%f" % sm.tsa.stattools.adfuller(best_model.resid
         [13:])[1])
         pyplot.show()
         Dickey-Fuller test:: p=0.000000
         (u'Residuals')
                             2014
               2013
                                          2015
                                                       2016
                                                                    2017
                                                                                 2018
                                                 Timestamp
                                               Autocorrelation
           1.0
           8.0
           0.6
           0.4
           0.2
          -0.2
          -0.4
                 0
                            10
                                       20
                                                  30
                                                             40
                                                                       50
                                                                                  60
In [0]:
         # Prediction
         # Inverse Box-Cox Transformation Function
         def invboxcox(y,lmbda):
            if lmbda == 0:
                return (np.exp(y))
            else:
                return (np.exp (np.log (lmbda*y+1) /lmbda))
In [0]: df month2 = df month[['Weighted Price']]
         date list = [datetime(2017, 6, 30), datetime(2017, 7, 31), datetime(2017, 8, 3
         1), datetime(2017, 9, 30),
                       datetime(2017, 10, 31), datetime(2017, 11, 30), datetime(2017, 12
         , 31), datetime(2018, 1, 31),
                       datetime(2018, 1, 28)]
         future = pd.DataFrame(index=date list, columns= df month.columns)
         df month2 = pd.concat([df month2, future])
         df month2['forecast'] = invboxcox(best model.predict(start=0, end=75), lmbda)
         plt.figure(figsize=(15,7))
         df month2.Weighted Price.plot()
         df month2.forecast.plot(color='r', ls='--', label='Predicted Weighted Price')
         plt.legend()
         plt.title('Bitcoin Exchanges By Months')
         plt.ylabel('Mean Price USD')
         plt.show()
                                           Bitcoin Exchanges By Months
                      Weighted_Price
           17500
                  -- Predicted Weighted Price
           15000
            12500
         Mean Price USD
           10000
            7500
            5000
            2500
               0
                          2013
                                               2015
                2012
                                                         2016
                                                                   2017
                                                                             2018
                                                                                       2019
```

Bitcoin Price Prediction