In [O0]:
In [O0]:
In [O0]:
In [O0]:
Oout[0]
In [0]:
Out[0]:
In [O0]:
Out[0]:
In [O0]:
In [0]:
out[0]:
In [0]
Out[0]:
In [0]
In [0]:
In [O0]:
In [O0]:
In [0]:
In [O0]:
In [O0]:
In [0]:
In [O0]:
In [0]:
In [O0]:
In [O0]:
In [0]:

Bitcoin Price Prediction

RIHAD VARIAWA

14-11-2018

This project is about predicting the price of bitcoin using
time series forecasting

Time series forecasting is quite different from other machine learning models because -

1. It is time dependent. So, the basic assumption of a linear regression model that the
observations are independent doesn’t hold in this case.

2. Along with an increasing or decreasing trend, most time series have some form of seasonality
trends, i.e. variations specific to a particular time frame.

Therefore simple ML models cannot be used and hence time series forecasting is a different area
of research. This time series model ARIMA (Autoregressive Integrated Moving Average model) is
used for forecasting the price of bitcoin.**

I've used the time series model ARIMA and trained a neural network model RNN for predicting the
bitcoin prices for future based on previous values and trends.Using ARIMA model which was
trained on around 90 data points, an average accuracy of 80—85 % was achieved and using the
RNN model an accuracy of almost 95% was achieved. This project was mainly built as Bitcoin is
longest running and most well known cryptocurrency and is said to have a great future. Through
this project what | wanted to see is if | could quickly train a deep learning model or use the standard
time series models to predict Bitcoin prices and its future trends.

Machine Learning:

The model built gives prediction for bitcoin prices on any date given in the standard Unix format.
These predictions could be used as the foundation of a bitcoin trading strategy. The people that
bought the stocks when they were at high prices, lost most of their money. This is why it is
important not to invest more money than you can afford to lose. Like stock market analysis this too
can be used by investors to judge the best time to make investments in order to get best results.
Even though there are multiple other factors which can affect the bitcoin price; like the supply and
demand, other cryptocurrencies and many others like this can be used as a basic model and the
rest factors can be manually studied as most of these factors are unpredictable. It can be used to
get a fair idea of the prices and where the investments can be made. Bitcoin is still young and many
sources says its here to stay.

import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import matplotlib as mpl
from scipy import stats
import statsmodels.api as sm
import warnings
from itertools import product
from datetime import datetime
warnings.filterwarnings ('ignore')
plt.style.use ('seaborn-poster')
/usr/local/lib/python3.6/dist-packages/statsmodels/compat/pandas.py:56: Futu
reWarning: The pandas.core.datetools module is deprecated and will be remove
d in a future version. Please use the pandas.tseries module instead.
from pandas.core import datetools

Making predictions with a ML techniques ARMA, Recurrent Neural Network (RNN) with prediction
and time series analysis is our main objective.
An ARIMA model is a class of statistical models for analyzing and forecasting time series data.
It explicitly caters to a suite of standard structures in time series data, and as such provides a
simple yet powerful method for making skillful time series forecasts.
from google.colab import files
files.upload()
| Choose Files | No file chosen
Upload widget is only available when the cell has been executed in the current browser session. Please
rerun this cell to enable.
Saving bitstampUSD 1-min data 2012-01-01 to 2018-11-1l.csv to bitstampUSD 1-
min data 2012-01-01 to 2018-11-1l.csv
df=pd.read csv('bitstampUSD 1-min data 2012-01-01 to 2018-11-1l.csv')
df.head ()

Open High Low Close Volume_(BTC) Volume_(Currency) Weighted_|
Timestamp
2011-12-31 4.465000 4.482500 4.465000 4.482500 23.829470 106.330084 4.47
2012-01-01 4.806667 4.806667 4.806667 4.806667 7.200667 35.259720 4.80
2012-01-02 5.000000 5.000000 5.000000 5.000000 19.048000 95.240000 5.00
2012-01-03 5.252500 5.252500 5.252500 5.252500 11.004660 58.100651 5.25
2012-01-04 5.200000 5.223333 5.200000 5.223333 11.914807 63.119577 5.20
df.dtypes
Timestamp inte4
Open float64d
High floatoe4d
Low float64
Close floato4
Volume (BTC) floato4
Volume (Currency) floato4d
Weighted Price floatoe4d
dtype: object
df . shape
(2507, 7)
Feature Extraction
Unix-time to
df.Timestamp = pd.to datetime (df.Timestamp, unit='s')
Resampling to daily frequency
df.index = df.Timestamp
df = df.resample('D') .mean ()
Resampling to monthly frequency
df month = df.resample('M') .mean ()
Resampling to annual frequency
df year = df.resample ('A-DEC') .mean ()
Resampling to quarterly frequency
df Q = df.resample('Q-DEC') .mean ()
df .head()

Open High Low Close Volume_(BTC) Volume_(Currency) Weighted_|
Timestamp
2011-12-31 4.465000 4.482500 4.465000 4.482500 23.829470 106.330084 4.47
2012-01-01 4.806667 4.806667 4.806667 4.806667 7.200667 35.259720 4.80
2012-01-02 5.000000 5.000000 5.000000 5.000000 19.048000 95.240000 5.00
2012-01-03 5.252500 5.252500 5.252500 5.252500 11.004660 58.100651 5.25
2012-01-04 5.200000 5.223333 5.200000 5.223333 11.914807 63.119577 5.20
df.tail (5)

Open High Low Close Volume_(BTC) Volume_(Currenc

Timestamp
2018-11-06 6413.198590 6414.012555 6412.502904 6413.364822 3.237555 20786.9127%
2018-11-07 6506.845810 6507.861305 6505.976738 6506.953638 3.684440 23981.5633¢
2018-11-08 6448.508802 6449.444281 6447.496121 6448.523555 3.065667 19760.8150¢
2018-11-09 6365.194847 6366.161427 6364.184180 6365.227867 2.524023 16059.8042¢
2018-11-10 6354.595866 6355.569189 6353.543136 6354.722105 1.287738 8180.1854:
PLOTS
fig = plt.figure(figsize=[15, 7])
plt.suptitle ('Bitcoin Exchanges, Mean USD', fontsize=22)
plt.subplot (221)
plt.plot (df .Weighted Price, '-', label='By Days')
plt.legend()
plt.subplot (222)
plt.plot (df month.Weighted Price, '-', label='By Months"')
plt.legend ()
plt.subplot (223)
plt.plot (df Q.Weighted Price, '-', label='By Quarters')
plt.legend ()
plt.subplot (224)
plt.plot (df year.Weighted Price, '-', label='By Years')
plt.legend ()
plt.tight layout ()
plt.show ()

Bitcoin Exchanges, Mean USD

20000

15000
— By Days — By Months
15000
10000
10000
5000 5000

2012 2013 2014 2015 2016 2017 2018 2019 2012 2013 2014 2015 2016 2017 2018 2019

10000 — By Quarters 8000 — By Years
7500 6000
5000 4000
2500 2000
0 0

2012 2013 2014 2015 2016 2017 2018 2019 2012 2013 2014 2015 2016 2017 2018 2019

The timestamp in the data was converted to standard UNIX timestamps and for ARIMA the
data was grouped by months by taking the mean values and for RNN the data was grouped
by the days again taking mean value for each day.

Splitting data into train and test set

split = 80
df train = df month[:split]
df test = df month[split:len(df month)]

Stationarity check and STL-decomposition of the series
plt.figure(figsize=[15,71)
sm.tsa.seasonal decompose (df train.Weighted Price) .plot ()

print ("Dickey-Fuller test: p=%£f" % sm.tsa.stattools.adfuller (df train.Weighted
_Price) [1])

plt.show ()

Dickey-Fuller test: p=0.968518

<matplotlib.figure.Figure at 0x7f37c84fe748>

10000

Observed

1000

Seasonal

5000

Residual

2012 2013 2014 2015

Timestamp

2016 2017 2018

Box—-Cox Transformations

df train['Weighted Price box'], lmbda = stats.boxcox(df train.Weighted Price)
print ("Dickey-Fuller test: p=%f" % sm.tsa.stattools.adfuller (df train.Weighted
_Price) [1])

Dickey-Fuller test: p=0.968518

Seasonal differentiation

df train['prices box diff'] = df train.Weighted Price box - df train.Weighted
Price box.shift (12)

print ("Dickey-Fuller test: p=%f" %
ox diff[12:])[1])

sm.tsa.stattools.adfuller (df train.prices b

Dickey-Fuller test: p=0.022912

As the p-value is more than the threshold i.e 5% we conclude The series ar

e not stationary.

Regular differentiation

df train['prices box diff2'] = df train.prices box diff - df train.prices box
diff.shift (1)

plt.figure(figsize=(15,7))

STL-decomposition

sm.tsa.seasonal decompose (df train.prices box diff2[13:]) .plot ()

print ("Dickey—-Fuller test: p=%f" % sm.tsa.stattools.adfuller(df train.prices b
ox diff2([13:])[1])

plt.show ()
Dickey-Fuller test: p=0.003956

<matplotlib.figure.Figure at 0x7£37c83c55f£8>

2

Seasonal Trend
Observed
o

Residual
o

2013 2014 2015 2016

Timestamp

2017 2018

from pandas import Series
from matplotlib import pyplot
from statsmodels.graphics.tsaplots import plot acf

plot acf(df train.prices box diff2[13:].values.squeeze())
pyplot.show ()

Autocorrelation

10

0.8

0.6

0.4

0.2

| H‘ T

e

0.0

||.”. ﬂ”h II .
I T =TT

0 10

from pandas import Series
from matplotlib import pyplot
from statsmodels.graphics.tsaplots import plot pacf

plot pacf (df train.prices box diff2[13:].values.squeeze(), lags=50)
pyplot.show ()

Partial Autocorrelation

10

0.8

0.6

0.4

0.2

0.0

I|”|r|r|
|I1I IIII 1] l\llll I II LR L

0 10 20 30 40 50

Initial approximation of parameters

Qs = range (0, 2)

gs = range (0, 3)

Ps = range (0, 3)

ps = range (0, 3)

D=1

d=1

parameters = product (ps, gs, Ps, Qs)

parameters list = list (parameters)
len (parameters list)

Model Selection
results = []
best aic = float ("inf")
warnings.filterwarnings ('ignore')
for param in parameters list:
try:
model=sm.tsa.statespace.SARIMAX (df train.Weighted Price box, order=(pa
ram([0], d, param[1l]),
seasonal order=(param[2], D, param[3],
12)) .fit (disp=-1)
except ValueError:
print ('wrong parameters:', param)
continue
model.aic
if aic < best aic:
best model = model
best aic = aic
best param = param
results.append ([param, model.aic])

aic =

wrong parameters: (0, 0, 0, 0)
wrong parameters: (2, 1, 0, 0)
wrong parameters: (2, 1, 0, 1)
wrong parameters: (2, 1, 1, 0)
wrong parameters: (2, 1, 1, 1)
wrong parameters: (2, 1, 2, 0)
wrong parameters: (2, 1, 2, 1)

Best Models
result table = pd.DataFrame (results)

result table.columns = ['parameters', 'aic']

print (result table.sort values(by = 'aic', ascending=True) .head())
parameters aic

18 (1, 0, 0, 1) 85.627332

20 (1, 0, 1, 1) 85.913294

12 (0, 2, 0, 1) 86.860969

6 (0, 1, 0, 1) 87.338825

36 (2, 0, 0, 1) 87.541997

STL-decomposition

from pandas import Series
from matplotlib import pyplot
from statsmodels.graphics.tsaplots import plot acf

plt.figure(figsize=(15,7))
plt.subplot (211)

best model.resid[13:].plot ()
,plt.ylabel (u'Residuals’)

plot acf (best model.resid[13:].values.squeeze())

print ("Dickey-Fuller test:: p=%f" %
[13:7) [1])

sm.tsa.stattools.adfuller (best model.resid

pyplot.show ()

Dickey-Fuller test:: p=0.000000

21
=
=
vl
48]
o
=
2013 2014 2015 2016 2017 2018
Timestamp
Autocorrelation
1.0
0.8
0.6
0.4
0.2
0.0 —
-0.2
-0.4
0 10 20 30 40 50 60
Prediction
Inverse Box-Cox Transformation Function
def invboxcox(y,lmbda) :
if lmbda == 0:
return (np.exp (y))
else:
return (np.exp (np.log (lmbda*y+1) /1lmbda))
df month2 = df month[['Weighted Price']]
date list = [datetime (2017, 6, 30), datetime (2017, 7, 31), datetime (2017, 8, 3
1), datetime (2017, 9, 30),
datetime (2017, 10, 31), datetime (2017, 11, 30), datetime (2017, 12
, 31), datetime (2018, 1, 31),
datetime (2018, 1, 28)]
future = pd.DataFrame (index=date list, columns= df month.columns)

df month2 = pd.concat ([df month2, future])

df month2['forecast'] = invboxcox(best model.predict (start=0, end=75), lmbda)
plt.figure(figsize=(15,7))

df month2.Weighted Price.plot ()

df month2.forecast.plot(color="r', 1ls='--', label='Predicted Weighted Price')

plt.legend ()
plt.title('Bitcoin Exchanges By Months')
plt.ylabel ('"Mean Price USD')
plt.show()
Bitcoin Exchanges By Months
17500 Weig.hted_Pri‘_;e . ll
== Predicted Weighted_Price 1
15000 \
1
1
2 12500 -
- 1
& 10000 \
5 !
S 7500 I
2 !
5000 N
]
- J"“ﬂ"‘e‘_—_—_’———"—"‘"j\’
0
D B) © A > 9
il o i S s o o IS

